Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(6): 2206-2227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481105

RESUMEN

Terpenoids are defense metabolites that are induced upon infection or wounding. However, their role in systemic-induced resistance (SIR) is not known. Here, we explored the role of terpenoids in this phenomenon at a very early stage in the interaction between Austrian pine and the tip blight and canker pathogen Diplodia pinea. We induced Austrian pine saplings by either wounding or inoculating the lower stems with D. pinea. The seedlings were then challenged after 12 h, 72 h, or 10 days with D. pinea on the stem 15 cm above the induction. Lesion lengths and terpenoids were quantified at both induction and challenge locations. Key terpenoids were assayed for antifungal activity in in vitro bioassays. SIR increased with time and was correlated with the inducibility of several compounds. α-Pinene and a cluster of ß-pinene, limonene, benzaldehyde, dodecanol, and n-dodecyl acrylate were positively correlated with SIR and were fungistatic in vitro, while other compounds were negatively correlated with SIR and appeared to serve as a carbon source for D. pinea. This study shows that, overall, terpenoids are involved in SIR in this system, but their role is nuanced, depending on the type of induction and time of incubation. We hypothesize that some, such as α-pinene, could serve in SIR signaling.


Asunto(s)
Ascomicetos , Pinus , Enfermedades de las Plantas , Terpenos , Terpenos/metabolismo , Terpenos/farmacología , Pinus/metabolismo , Pinus/microbiología , Pinus/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Ascomicetos/fisiología , Resistencia a la Enfermedad , Plantones/metabolismo , Plantones/efectos de los fármacos
2.
Plants (Basel) ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068636

RESUMEN

Fraxinus americana L. (white ash), a native North American tree commonly cultivated for its ornamental qualities, displayed symptoms of leaf spot disease in a sentinel garden located in Nanjing, Jiangsu, China, in 2022. This disease led to premature leaf shedding, adversely affecting the plant's growth and substantially diminishing its ornamental value. Potential fungal pathogens were isolated from the diseased leaves and the subsequent application of Koch's postulates confirmed the pathogenicity of the fungal isolates (BL-1, BL-2). Through a combination of multi-locus phylogenetic analysis, including ITS, ACT, ApMat, CAL, CHS-1, GAPDH, and TUB2, alongside morphological assessments, the fungus was conclusively identified as Colletotrichum jiangxiense. This represents the first record of C. jiangxiense affecting white ash, highlighting the important role of sentinel gardens in uncovering novel pathogen-plant host interactions.

3.
New Phytol ; 240(3): 1219-1232, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345294

RESUMEN

Plants rely on cross-resistance traits to defend against multiple, phylogenetically distinct enemies. These traits are often the result of long co-evolutionary histories. Biological invasions can force naïve plants to cope with novel, coincident pests, and pathogens. For example, European ash (Fraxinus excelsior) is substantially threatened by the emerald ash borer (EAB), Agrilus planipennis, a wood-boring beetle, and the ash dieback (ADB) pathogen, Hymenoscyphus fraxineus. Yet, plant cross-resistance traits against novel enemies are poorly explored and it is unknown whether naïve ash trees can defend against novel enemy complexes via cross-resistance mechanisms. To gain mechanistic insights, we quantified EAB performance on grafted replicates of ash genotypes varying in ADB resistance and characterized ash phloem chemistry with targeted and untargeted metabolomics. Emerald ash borer performed better on ADB-susceptible than on ADB-resistant genotypes. Moreover, changes in EAB performance aligned with differences in phloem chemical profiles between ADB-susceptible and ADB-resistant genotypes. We show that intraspecific variation in phloem chemistry in European ash can confer increased cross-resistance to invasive antagonists from different taxonomic kingdoms. Our study suggests that promotion of ADB-resistant ash genotypes may simultaneously help to control the ADB disease and reduce EAB-caused ash losses, which may be critical for the long-term stability of this keystone tree species.


Asunto(s)
Escarabajos , Fraxinus , Animales , Fraxinus/genética , Metabolómica , Genotipo , Larva
4.
Plant Dis ; 107(11): 3575-3584, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37198724

RESUMEN

The recently emerged beech leaf disease (BLD) is causing the decline and death of American beech in North America. First observed in 2012 in northeast Ohio, U.S.A., BLD had been documented in 10 northeastern states and the Canadian province of Ontario as of July 2022. A foliar nematode has been implicated as the causal agent, along with some bacterial taxa. No effective treatments have been documented in the primary literature. Irrespective of potential treatments, prevention and prompt eradication (rapid responses) remain the most cost-effective approaches to the management of forest tree disease. For these approaches to be feasible, however, it is necessary to understand the factors that contribute to BLD spread and use them in estimation of risk. Here, we conducted an analysis of BLD risk across northern Ohio, western Pennsylvania, western New York, and northern West Virginia, U.S.A. In the absence of symptoms, an area cannot necessarily be deemed free of BLD (i.e., absence of BLD cannot be certain) due to its fast spread and the lag in symptom expression (latency) after infection. Therefore, we employed two widely used presence-only species distribution models (SDMs), one-class support vector machine (OCSVM), and maximum entropy (Maxent) to predict the spatial pattern of BLD risk based on BLD presence records and associated environmental variables. Our results show that both methods work well for BLD environmental risk modeling purposes, but Maxent outperforms OCSVM with respect to both the quantitative receiver operating characteristics (ROC) analysis and the qualitative evaluation of the spatial risk maps. Meanwhile, the Maxent model provides a quantification of variable contribution for different environmental factors, indicating that meteorological (isothermality and temperature seasonality) and land cover type (closed broadleaved deciduous forest) factors are likely key contributors to BLD distribution. Moreover, the future trajectories of BLD risk over our study area in the context of climate change were investigated by comparing the current and future risk maps obtained by Maxent. In addition to offering the ability to predict where the disease may spread next, our work contributes to the epidemiological characterization of BLD, providing new lines of investigation to improve ecological or silvicultural management. Furthermore, this study shows strong potential for extension of environmental risk mapping over the full American beech distribution range so that proactive management measures can be put in place. Similar approaches can be designed for other significant or emerging forest pest problems, contributing to overall management efficiency and efficacy.


Asunto(s)
Fagus , Estados Unidos , Bosques , New England , Hojas de la Planta , Ontario
5.
Annu Rev Phytopathol ; 61: 377-401, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253697

RESUMEN

Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.


Asunto(s)
Ecosistema , Médicos , Humanos , Bosques , Bioaseguramiento , Medición de Riesgo
6.
Methods Mol Biol ; 2536: 347-366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819613

RESUMEN

Recent advancements in high-throughput sequencing have provided scientists with vastly enhanced tools to diagnose unknown tree diseases. One of these techniques is referred to as metabarcoding, which uses phylogenetically informative reference genes to taxonomically classify short DNA sequences amplified from environmental samples. Using metabarcoding, we are able to compare the microbiota of symptomatic and asymptomatic (including presumably naïve) samples and identify microbe(s) that are only present in symptomatic samples and could therefore be responsible for the undiagnosed disease. Metabarcoding involves two main steps: library preparation and bioinformatic processing. For library preparation, the appropriate reference gene for the organism of interest (i.e., bacteria, phytoplasma, fungi, or other eukaryotes, such as nematodes) is amplified from the DNA extracted from the environmental samples using PCR and prepared for sequencing. The bioinformatic processing includes four major steps: (1) quality check and cleanup on raw reads; (2) classification of the sequences into taxonomically informative groups (ASVs or OTUs); (3) taxonomy assignments based on the reference database; and (4) differential abundance and diversity analyses to identify microbes that are significantly associated with just symptomatic samples and that point toward the putative causal agent of the disease.


Asunto(s)
Eucariontes , Enfermedades no Diagnosticadas , Código de Barras del ADN Taxonómico/métodos , Eucariontes/genética , Hongos/genética , Árboles/genética
7.
PLoS One ; 16(9): e0250395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34555045

RESUMEN

A key component in understanding plant-insect interactions is the nature of host defenses. Research on defense traits among Pinus species has focused on specialized metabolites and axial resin ducts, but the role of lignin in defense within diverse systems is unclear. We investigated lignin levels in the outer bark and phloem of P. longaeva, P. balfouriana, and P. flexilis; tree species growing at high elevations in the western United States known to differ in susceptibility to mountain pine beetle (Dendroctonus ponderosae; MPB). Pinus longaeva and P. balfouriana are attacked by MPB less frequently than P. flexilis, and MPB brood production in P. longaeva is limited. Because greater lignification of feeding tissues has been shown to provide defense against bark beetles in related genera, such as Picea, we hypothesized that P. longaeva and P. balfouriana would have greater lignin concentrations than P. flexilis. Contrary to expectations, we found that the more MPB-susceptible P. flexilis had greater phloem lignin levels than the less susceptible P. longaeva and P. balfouriana. No differences in outer bark lignin levels among the species were found. We conclude that lignification in Pinus phloem and outer bark is likely not adaptive as a physical defense against MPB.


Asunto(s)
Resistencia a la Enfermedad , Lignina/análisis , Floema/química , Pinus/química , Altitud , Animales , Escarabajos/patogenicidad , Pinus/clasificación , Pinus/parasitología , Corteza de la Planta/química , Especificidad de la Especie
8.
Mycologia ; 113(4): 776-790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914673

RESUMEN

Desarmillaria caespitosa, a North American vicariant species of European D. tabescens, is redescribed in detail based on recent collections from the USA and Mexico. This species is characterized by morphological features and multilocus phylogenetic analyses using portions of nuc rDNA 28S (28S), translation elongation factor 1-alpha (tef1), the second largest subunit of RNA polymerase II (rpb2), actin (act), and glyceraldehyde-3-phosphate dehydrogenase (gpd). A neotype of D. caespitosa is designated here. Morphological and genetic differences between D. caespitosa and D. tabescens were identified. Morphologically, D. caespitosa differs from D. tabescens by having wider basidiospores, narrower cheilocystidia, which are often irregular or mixed (regular, irregular, or coralloid), and narrower caulocystidia. Phylogenetic analyses of five independent gene regions show that D. caespitosa and D. tabescens are separated by nodes with strong support. The new combination, D. caespitosa, is proposed.


Asunto(s)
Basidiomycota , Factor 1 de Elongación Peptídica , Basidiomycota/genética , ADN de Hongos/genética , ADN Ribosómico/genética , América del Norte , Factor 1 de Elongación Peptídica/genética , Filogenia , Análisis de Secuencia de ADN , Esporas Fúngicas
9.
Plant Phenomics ; 2020: 8954085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313566

RESUMEN

Early detection of plant diseases, prior to symptom development, can allow for targeted and more proactive disease management. The objective of this study was to evaluate the use of near-infrared (NIR) spectroscopy combined with machine learning for early detection of rice sheath blight (ShB), caused by the fungus Rhizoctonia solani. We collected NIR spectra from leaves of ShB-susceptible rice (Oryza sativa L.) cultivar, Lemont, growing in a growth chamber one day following inoculation with R. solani, and prior to the development of any disease symptoms. Support vector machine (SVM) and random forest, two machine learning algorithms, were used to build and evaluate the accuracy of supervised classification-based disease predictive models. Sparse partial least squares discriminant analysis was used to confirm the results. The most accurate model comparing mock-inoculated and inoculated plants was SVM-based and had an overall testing accuracy of 86.1% (N = 72), while when control, mock-inoculated, and inoculated plants were compared the most accurate SVM model had an overall testing accuracy of 73.3% (N = 105). These results suggest that machine learning models could be developed into tools to diagnose infected but asymptomatic plants based on spectral profiles at the early stages of disease development. While testing and validation in field trials are still needed, this technique holds promise for application in the field for disease diagnosis and management.

10.
New Phytol ; 225(2): 609-620, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494947

RESUMEN

Plant interactions with herbivores and pathogens are among the most widespread ecological relationships, and show many congruent properties. Despite these similarities, general models describing how plant defenses function in ecosystems, and the prioritization of responses to emerging challenges such as climate change, invasive species and habitat alteration, often differ markedly between entomologists and plant pathologists. We posit that some fundamental distinctions between how insects and pathogens interact with plants underlie these differences. We propose a conceptual framework to help incorporate these distinctions into robust models and research priorities. The most salient distinctions include features of host-searching behavior, evasion of plant defenses, plant tolerance to utilization, and sources of insect and microbial population regulation. Collectively, these features lead to relatively more diffuse and environmentally mediated plant-insect interactions, and more intimate and genetically driven plant-pathogen interactions. Specific features of insect vs pathogen life histories can also yield different patterns of spatiotemporal dynamics. These differences can become increasingly pronounced when scaling from controlled laboratory to open ecological systems. Integrating these differences alongside similarities can foster improved models and research approaches to plant defense, trophic interactions, coevolutionary dynamics, food security and resource management, and provide guidance as traditional departments increase collaborations, or merge into larger units.


Asunto(s)
Ecosistema , Entomología , Plantas , Animales , Herbivoria/fisiología , Insectos/crecimiento & desarrollo , Insectos/fisiología , Estadios del Ciclo de Vida
11.
Plant Sci ; 289: 110247, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623795

RESUMEN

Conifer trees, including Norway spruce, are threatened by fungi of the Heterobasidion annosum species complex, which severely affect timber quality and cause economic losses to forest owners. The timely detection of infected trees is complicated, as the pathogen resides within the heartwood and sapwood of infected trees. The presence of the disease and the extent of the wood decay often becomes evident only after tree felling. Fourier-transform infrared (FT-IR) spectroscopy is a potential method for non-destructive sample analysis that may be useful for identifying infected trees in this pathosystem. We performed FT-IR analysis of 18 phloem, 18 xylem, and 18 needle samples from asymptomatic and symptomatic Norway spruce trees. FT-IR spectra from 1066 - 912 cm-1 could be used to distinguish phloem, xylem, and needle tissue extracts. FT-IR spectra collected from xylem and needle extracts could also be used to discriminate between asymptomatic and symptomatic trees using spectral bands from 1657 - 994 cm-1 and 1104 - 994 cm-1, respectively. A partial least squares regression model predicted the concentration of condensed tannins, a defense-related compound, in phloem of asymptomatic and symptomatic trees. This work is the first to show that FT-IR spectroscopy can be used for the identification of Norway spruce trees naturally infected with Heterobasidion spp.


Asunto(s)
Basidiomycota/aislamiento & purificación , Picea/microbiología , Enfermedades de las Plantas/microbiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Floema/microbiología , Hojas de la Planta/microbiología , Xilema/microbiología
12.
Tree Physiol ; 39(1): 31-44, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137615

RESUMEN

Heterobasidion irregulare is a causal agent of root and butt-rot disease in conifers, and is native to North America. In 1944 it was introduced in central Italy in a Pinus pinea stand, where it shares the same niche with the native species Heterobasidion annosum. The introduction of a non-native pathogen may have significant negative effects on a naïve host tree and the ecosystem in which it resides, requiring a better understanding of the system. We compared the spatio-temporal phenotypic, transcriptional and metabolic host responses to inoculation with the two Heterobasidion species in a large experiment with P. pinea seedlings. Differences in length of lesions at the inoculation site (IS), expression of host genes involved in lignin pathway and in cell rescue and defence, and analysis of terpenes at both IS and 12 cm above the IS (distal site, DS), were assessed at 3, 14 and 35 days post inoculation (dpi). Results clearly showed that both species elicit similar physiological and biochemical responses in P. pinea seedlings. The analysis of host transcripts and total terpenes showed differences between inoculation sites and between pathogen and mock inoculated plants. Both pathogen and mock inoculations induced antimicrobial peptide and phenylalanine ammonia-lyase overexpression at IS beginning at 3 dpi; while at DS all the analysed genes, except for peroxidase, were overexpressed at 14 dpi. A significantly higher accumulation of terpenoids was observed at 14 dpi at IS, and at 35 dpi at DS. The terpene blend at IS showed significant variation among treatments and sampling times, while no significant differences were ever observed in DS tissues. Based on our results, H. irregulare does not seem to have competitive advantages over the native species H. annosum in terms of pathogenicity towards P. pinea trees; this may explain why the non-native species has not widely spread over the 73 years since its putative year of introduction into central Italy.


Asunto(s)
Basidiomycota , Pinus/microbiología , Enfermedades de las Plantas/microbiología , Árboles/microbiología , Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Especies Introducidas , Lignina/biosíntesis , Lignina/genética , Enfermedades de las Plantas/genética , Terpenos/metabolismo , Transcripción Genética , Árboles/genética
13.
Plant Cell Environ ; 42(2): 633-646, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30474119

RESUMEN

Conifers possess chemical and anatomical defences against tree-killing bark beetles that feed in their phloem. Resins accumulating at attack sites can delay and entomb beetles while toxins reach lethal levels. Trees with high concentrations of metabolites active against bark beetle-microbial complexes, and more extensive resin ducts, achieve greater survival. It is unknown if and how conifers integrate chemical and anatomical components of defence or how these capabilities vary with historical exposure. We compared linkages between phloem chemistry and tree ring anatomy of two mountain pine beetle hosts. Lodgepole pine, a mid-elevation species, has had extensive, continual contact with this herbivore, whereas high-elevation whitebark pines have historically had intermittent exposure that is increasing with warming climate. Lodgepole pine had more and larger resin ducts. In both species, anatomical defences were positively related to tree growth and nutrients. Within-tree constitutive and induced concentrations of compounds bioactive against bark beetles and symbionts were largely unrelated to resin duct abundance and size. Fewer anatomical defences in the semi-naïve compared with the continually exposed host concurs with directional differences in chemical defences. Partially uncoupling chemical and morphological antiherbivore traits may enable trees to confront beetles with more diverse defence permutations that interact to resist attack.


Asunto(s)
Herbivoria , Pinus/fisiología , Resinas de Plantas/metabolismo , Árboles/fisiología , Gorgojos , Animales , Floema/metabolismo , Pinus/metabolismo , Corteza de la Planta , Árboles/metabolismo
14.
Front Plant Sci ; 9: 1651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519249

RESUMEN

Resistance to herbivores and pathogens is considered a key plant trait with strong adaptive value in trees, usually involving high concentrations of a diverse array of plant secondary metabolites (PSM). Intraspecific genetic variation and plasticity of PSM are widely known. However, their ecology and evolution are unclear, and even the implication of PSM as traits that provide direct effective resistance against herbivores is currently questioned. We used control and methyl jasmonate (MJ) induced clonal copies of genotypes within families from ten populations of the main distribution range of maritime pine to exhaustively characterize the constitutive and induced profile and concentration of PSM in the stem phloem, and to measure insect herbivory damage as a proxy of resistance. Then, we explored whether genetic variation in resistance to herbivory may be predicted by the constitutive concentration of PSM, and the role of its inducibility to predict the increase in resistance once the plant is induced. We found large and structured genetic variation among populations but not between families within populations in resistance to herbivory. The MJ-induction treatment strongly increased resistance to the weevil in the species, and the genetic variation in the inducibility of resistance was significantly structured among populations, with greater inducibility in the Atlantic populations. Genetic variation in resistance was largely explained by the multivariate concentration and profile of PSM at the genotypic level, rather than by bivariate correlations with individual PSM, after accounting for genetic relatedness among genotypes. While the constitutive concentration of the PSM blend did not show a clear pattern of resistance to herbivory, specific changes in the chemical profile and the increase in concentration of the PSM blend after MJ induction were related to increased resistance. To date, this is the first example of a comprehensive and rigorous approach in which inducibility of PSM in trees and its implication in resistance was analyzed excluding spurious associations due to genetic relatedness, often overlooked in intraspecific studies. Here we provide evidences that multivariate analyses of PSM, rather than bivariate correlations, provide more realistic information about the potentially causal relationships between PSM and resistance to herbivory in pine trees.

15.
Sci Rep ; 8(1): 17448, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487524

RESUMEN

Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.


Asunto(s)
Epidemias , Fenotipo , Enfermedades de las Plantas/microbiología , Análisis Espectral , Susceptibilidad a Enfermedades , Europa (Continente) , Fraxinus/genética , Fraxinus/microbiología , Geografía , Análisis Espectral/métodos
17.
Tree Physiol ; 37(12): 1686-1696, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036534

RESUMEN

Sudden oak death, caused by the invasive pathogen Phytophthora ramorum Werres, de Cock & Man in't Veld, can be deadly for Quercus agrifolia Neé (coast live oak, CLO). However, resistant trees have been observed in natural populations. The objective of this study was to examine if pre-attack (constitutive) levels of phenolic compounds can be used as biomarkers to identify trees likely to be resistant. Naïve trees were selected from a natural population and phloem was sampled for analysis of constitutive phenolics. Following P. ramorum inoculation, trees were phenotyped to determine disease susceptibility and constitutive phenolic biomarkers of resistance were identified. Seasonal variation in phloem phenolics was also assessed in a subset of non-inoculated trees. Four biomarkers, including myricitrin and three incompletely characterized flavonoids, together correctly classified 80% of trees. Biomarker levels were then used to predict survival of inoculated CLO and the proportion of resistant trees within a subset of non-inoculated trees from the same population. Levels of five phenolics were significantly affected by season, but with no pronounced variation in average levels among seasons. These results suggest that pre-infection levels of specific phenolic compounds (i.e., biomarkers) can identify trees naturally resistant to this invasive forest pathogen. Knowledge of resistant trees within natural populations may be useful for conserving and breeding resistant trees and for disease management.


Asunto(s)
Biomarcadores/metabolismo , Fenoles/metabolismo , Phytophthora/patogenicidad , Quercus/metabolismo , Quercus/microbiología , Flavonoides/metabolismo , Enfermedades de las Plantas/microbiología , Estaciones del Año
18.
J Chem Ecol ; 43(5): 506-518, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28466378

RESUMEN

Conifer trees resist pest and pathogen attacks by complex defense responses involving different classes of defense compounds. However, it is unknown whether prior infection by biotrophic pathogens can lead to subsequent resistance to necrotrophic pathogens in conifers. We used the infection of jack pine, Pinus banksiana, by a common biotrophic pathogen dwarf mistletoe, Arceuthobium americanum, to investigate induced resistance to a necrotrophic fungus, Grosmannia clavigera, associated with the mountain pine beetle, Dendroctonus ponderosae. Dwarf mistletoe infection had a non-linear, systemic effect on monoterpene production, with increasing concentrations at moderate infection levels and decreasing concentrations at high infection levels. Inoculation with G. clavigera resulted in 33 times higher monoterpene concentrations and half the level of phenolics in the necrotic lesions compared to uninoculated control trees. Monoterpene production following dwarf mistletoe infection seemed to result in systemic induced resistance, as trees with moderate disease severity were most resistant to G. clavigera, as evident from shorter lesion lengths. Furthermore, trees with moderate disease severity had the highest systemic but lowest local induction of α-pinene after G. clavigera inoculation, suggesting a possible tradeoff between systemically- and locally-induced defenses. The opposing effects to inoculation by G. clavigera on monoterpene and phenolic levels may indicate the potential for biosynthetic tradeoffs by the tree between these two major defense classes. Our results demonstrate that interactions between a biotrophic parasitic plant and a necrotrophic fungus may impact mountain pine beetle establishment in novel jack pine forests through systemic effects mediated by the coordination of jack pine defense chemicals.


Asunto(s)
Ascomicetos/fisiología , Escarabajos/fisiología , Pinus/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Monoterpenos/análisis , Fenoles/análisis , Pinus/metabolismo , Pinus/microbiología , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Simbiosis
19.
Plant Cell Environ ; 40(9): 1791-1806, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28543133

RESUMEN

Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species.


Asunto(s)
Escarabajos/fisiología , Ecosistema , Pinus/parasitología , Corteza de la Planta/parasitología , Enfermedades de las Plantas/parasitología , Animales , Carbohidratos/análisis , Carbono/metabolismo , Escarabajos/microbiología , Minerales/análisis , Compuestos Orgánicos/análisis , Fenoles/análisis , Floema/metabolismo , Análisis de Componente Principal , Terpenos/análisis
20.
Food Res Int ; 95: 59-67, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28395826

RESUMEN

Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions.


Asunto(s)
Coffea/química , Café/química , Aminoácidos/análisis , Antioxidantes/análisis , Fenómenos Químicos , Manipulación de Alimentos , Calor , Semillas/química , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...