Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Ann Biomed Eng ; 49(11): 3031-3045, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34142277

RESUMEN

Previous studies involving whole-body post-mortem human surrogates (PHMS) have generated biomechanical response specifications for physically simulated accelerative loading intended to reproduce seat and floor velocity histories occurring in under-body blast (UBB) events (e.g.,. References 10, 11, 21 These previous studies employed loading conditions that only rarely produced injuries to the foot/ankle and pelvis, which are body regions of interest for injury assessment in staged UBB testing using anthropomorphic test devices. To investigate more injurious whole-body conditions, three series of tests were conducted with PMHS that were equipped with military personal protective equipment and seated in an upright posture. These tests used higher velocity and shorter duration floor and seat inputs than were previously used with the goal of producing pelvis and foot/ankle fractures. A total of nine PMHS that were approximately midsize in stature and mass were equally allocated across three loading conditions, including a 15.5 m/s, 2.5 ms time-to-peak (TTP) floor velocity pulse with a 10 m/s, 7.5 ms TTP seat pulse; a 13 m/s, 2.5 ms TTP floor pulse with a 9.0 m/s, 5 ms TTP seat pulse; and a 10 m/s, 2.5 ms TTP floor pulse with a 6.5 m/s, 7.5 ms TTP seat pulse. In the first two conditions, the seat was padded with a ~ 120-mm-thick foam cushion to elongate the pulse experienced by the PMHS. Of the nine PMHS tests, five resulted in pelvic ring fractures, five resulted in a total of eight foot/ankle fractures (i.e., two unilateral and three bilateral fractures), and one produced a femur fracture. Test results were used to develop corridors describing the variability in kinematics and in forces applied to the feet, forces applied to the pelvis and buttocks in rigid seat tests, and in forces applied to the seat foam in padded seat tests. These corridors and the body-region specific injury/no-injury response data can be used to assess the performance and predictive capability of anthropomorphic test devices and computational models used as human surrogates in simulated UBB testing.


Asunto(s)
Traumatismos por Explosión , Traumatismos de los Pies , Fracturas Óseas , Modelos Biológicos , Pelvis/lesiones , Aceleración , Adulto , Anciano , Fenómenos Biomecánicos , Cadáver , Explosiones , Humanos , Masculino , Persona de Mediana Edad , Personal Militar , Estrés Mecánico , Adulto Joven
3.
Stapp Car Crash J ; 63: 235-266, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32311059

RESUMEN

Limited data exist on the injury tolerance and biomechanical response of humans to high-rate, under-body blast (UBB) loading conditions that are commonly seen in current military operations, and there are no data examining the influence of occupant posture on response. Additionally, no anthropomorphic test device (ATD) currently exists that can properly assess the response of humans to high-rate UBB loading. Therefore, the purpose of this research was to examine the response of post-mortem human surrogates (PMHS) in various seated postures to high-rate, vertical loading representative of those conditions seen in theater. In total, six PMHS tests were conducted using loading pulses applied directly to the pelvis and feet of the PMHS: three in an acute posture (foot, knee, and pelvis angles of 75°, 75°, and 36°, respectively), and three in an obtuse posture (15° reclined torso, and foot, knee, and pelvis angles of 105°, 105°, and 49.5°, respectively). Tests were conducted with a seat velocity pulse that peaked at ~4 m/s with a 30-40 ms time to peak velocity (TTP) and a floor velocity that peaked at 6.9-8.0 m/s (2-2.75 ms TTP). Posture condition had no influence on skeletal injuries sustained, but did result in altered leg kinematics, with leg entrapment under the seat occurring in the acute posture, and significant forward leg rotations occurring in the obtuse posture. These data will be used to validate a prototype ATD meant for use in high-rate UBB loading scenarios.


Asunto(s)
Explosiones , Vehículos a Motor , Postura , Accidentes de Tránsito , Autopsia , Fenómenos Biomecánicos , Cadáver , Humanos , Sujetos de Investigación
4.
Artículo en Inglés | MEDLINE | ID: mdl-27689140

RESUMEN

BACKGROUND: Surgical treatments for early onset scoliosis (EOS) correct curvatures and improve respiratory function but involve many complications. A distractible, or 'growing rod,' implant construct that is more flexible than current metal rod systems may sufficiently correct curves in small children and reduce complications due to biomechanical factors. The purpose of this pilot study was to determine ranges of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polymer rods would be greater than conventional metal rods and lower than non-instrumented controls. METHODS: Biomechanical tests were conducted on six thoracic spines from skeletally immature domestic swines (35-40 kg). Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of polyetheretherketone (PEEK) (diameter 6.25 mm), titanium (4 mm), and cobalt-chrome alloy (CoCr) (5 mm). Lateral bending (LB) and flexion-extension (FE) moments were applied, and vertebral rotations were measured. Differences were determined by two-tailed t-tests and Bonferroni for four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α = 0.05/4). RESULTS: In LB, ROM of spine segments after instrumenting with PEEK rods was lower than the non-instrumented control condition at each instrumented level. ROM was greater with PEEK rods than with Ti and CoCr rods at every instrumented level. Combining treated levels, in LB, ROM for PEEK rods was 35 % of control (p < 0.0001) and 270 % of CoCr rods (p < 0.01). In FE, ROM with PEEK was 27 % of control (p < 0.001) and 180 % of CoCr (p < 0.01). At proximal and distal adjacent non-instrumented levels in FE, mean ROM was lower for PEEK than for either metal. CONCLUSIONS: PEEK rods increased flexibility versus metal rods, and decreased flexibility versus non-instrumented controls, both over the entire instrumented segment and at each individual level. Smaller mean increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease complications, such as junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.

5.
Scoliosis ; 10(Suppl 2): S16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25810752

RESUMEN

BACKGROUND: Surgical treatments for early onset scoliosis (EOS), including growing rod constructs, involve many complications. Some are due to biomechanical factors. A construct that is more flexible than current instrumentation systems may reduce complications. The purpose of this preliminary study was to determine spine range of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polyetheretherketone (PEEK) rods would be greater than metal rods and lower than noninstrumented controls. Further, adjacent segment motion was expected to be lower with polymer rods compared to conventional systems. METHODS: Biomechanical tests were conducted on 6 skeletally immature porcine thoracic spines (domestic swine, 35-40 kg). Spines were harvested after death from swine that had been utilized for other studies (IACUC approved) which had not involved the spine. Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of PEEK (6.25 mm), titanium (4 mm), and CoCr (5 mm) alloy. Lateral bending (LB) and flexion-extension (FE) moments of ±5 Nm were applied. Vertebral rotations were measured using video. Differences were determined by two-tailed t-tests and Bonferroni correction with four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α=0.05/4). RESULTS: In LB, ROM of specimens with PEEK rods was lower than control at each instrumented level. ROM was greater for PEEK rods than both Ti and CoCr at every instrumented level. Mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for Ti and CoCr. In FE, mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for metal. Combining treated levels, in LB, ROM for PEEK rods was 35% of control (p<0.0001) and 270% of CoCr rods (p<0.01). In FE, ROM with PEEK was 27% of control (p<0.001) and 180% of CoCr (p<0.01). CONCLUSIONS: PEEK rods decreased flexibility versus noninstumented controls, and increased flexibility versus metal rods. Smaller increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA