Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Alzheimers Dis Rep ; 7(1): 613-625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483326

RESUMEN

Background: Alzheimer's disease (AD) has several risk factors. APOE4 is the main one, and it has been suggested that there may be a synergy between it and BCHE-K as a risk factor. Objective: To investigate the association between APOE4 and BCHE-K as a risk factor for AD. Methods: We searched PubMed, Web of Science, Embase, and Scopus on August 8, 2021 for studies that analyzed the association of APOE4 and BCHE-K with AD. The random effect model was performed in meta-analysis according to age group. A chi-square was performed with the meta-analysis data to verify if the effect found is not associated only with the E4 allele. Results: Twenty-one studies with 6,853 subjects (3,528 AD and 3,325 Controls) were included in the meta-analysis. The quality of the evidence is moderate. There is a positive E4-K association for subjects with AD as shown by the odds ratio of 3.43. The chi-square meta test, which measures the probability that the E4-K association is due to chance, has an odds ratio of 6.155, indicating that the E4-K association is not a random event. The odds ratio of an E4-K association in subjects with AD increases to OR 4.46 for the 65- to 75-year-old group and OR 4.15 for subjects older than 75 years. The probability that the E4-K association is due to chance is ruled out by chi-square meta test values of OR 8.638 and OR 9.558. Conclusion: The synergy between APOE4 and BCHE-K is a risk factor for late-onset AD.

2.
Eur Arch Psychiatry Clin Neurosci ; 266(7): 607-18, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26661385

RESUMEN

Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/enzimología , Compuestos de Litio/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fosfolipasas A2/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Hipocampo/efectos de los fármacos , Compuestos de Litio/administración & dosificación , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fosfolipasas A2/genética , Ratas , Ratas Wistar
3.
Neural Plast ; 2008: 595282, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18584042

RESUMEN

The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.


Asunto(s)
Envejecimiento/fisiología , Corteza Entorrinal/fisiología , Extinción Psicológica/fisiología , Animales , Humanos , Memoria/fisiología
4.
An Acad Bras Cienc ; 80(1): 115-27, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18345380

RESUMEN

Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Animales , Reacción de Prevención/fisiología , Humanos , Ratas
5.
An. acad. bras. ciênc ; 80(1): 115-127, Mar. 2008.
Artículo en Inglés | LILACS | ID: lil-477419

RESUMEN

Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.


A potenciação de longa duração (LTP) é o aumento de respostas pós-sinápticas durante horas, dias ou semanas após a breve estimulação repetitiva de aferentes pre-sinápticos. Foi proposto durante 30 anos ser a base da memória de longa duração. Vários achados recentes finalmente apoiaram esta hipótese: a) a formação da memória de esquiva inibitória adquirida numa sessão depende de uma cadeia de processos moleculares na região CA1 do hipocampo quase idêntica à da LTP nessa mesma região; b) LTP hipocampal nessa região acompanha a formação da memóría dessa tarefa e de outra semelhante. No entanto, a LTP de CA1 e os processos de memória podem ser dissociados e, fora disso, processos plásticos em outras regiões cerebrais (amígdala, córtex entorrinal, córtex parietal) também são necessários para a formação da memória da tarefa de uma sessão e talvez de muitas outras.


Asunto(s)
Animales , Humanos , Ratas , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Reacción de Prevención/fisiología
6.
Hippocampus ; 18(1): 29-39, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17853412

RESUMEN

Using two different mRNA synthesis inhibitors, we show that blockade of hippocampal gene expression during restricted posttraining or postretrieval time windows hinders retention of long-term spatial memory for the Morris water maze task, without affecting short-term memory, nonspatial learning, or the functionality of the hippocampus. Our results indicate that spatial memory consolidation induces the activation of the hippocampal transcriptional machinery and suggest the existence of a gene expression-dependent reconsolidation process that operates in the dorsal hippocampus at the moment of retrieval to stabilize the reactivated mnemonic trace.


Asunto(s)
Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , ARN Mensajero/metabolismo , Conducta Espacial/fisiología , Alfa-Amanitina/farmacología , Análisis de Varianza , Animales , Conducta Animal , Diclororribofuranosil Benzoimidazol/farmacología , Reacción de Fuga/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Trastornos de la Memoria/inducido químicamente , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos
7.
Trends Neurosci ; 29(9): 496-505, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16872686

RESUMEN

To understand cognition, it is important to understand how a learned response becomes a long-lasting memory. This process of memory consolidation has been modeled extensively using one-trial avoidance learning, in which animals (or humans) establish a conditioned response by learning to avoid danger in just one trial. This relies on molecular events in the CA1 region of the hippocampus that resemble those involved in CA1 long-term potentiation (LTP), and it also requires equivalent events to occur with different timings in the basolateral amygdala and the entorhinal, parietal and cingulate cortex. Many of these steps are modulated by monoaminergic pathways related to the perception of and reaction to emotion, which at least partly explains why strong and resistant consolidation is typical of emotion-laden memories. Thus memory consolidation involves a complex network of brain systems and serial and parallel molecular events, even for a task as deceptively simple as one-trial avoidance. We propose that these molecular events might also be involved in many other memory types in animals and humans.


Asunto(s)
Encéfalo/fisiología , Memoria/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Potenciación a Largo Plazo/fisiología
8.
Horm Behav ; 50(2): 308-13, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16697382

RESUMEN

The brain renin-angiotensin system (RAS) is involved in learning and memory, but the actual role of angiotensin II (A(II)) and its metabolites in this process has been difficult to comprehend. This has been so mainly due to procedural issues, especially the use of multi-trial learning paradigms and the utilization of pre-training intracerebroventricular infusion of RAS-acting compounds. Here, we specifically analyzed the action of A(II) in aversive memory retrieval using a hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. Rats bilaterally implanted with infusion cannulae aimed to the CA1 region of the dorsal hippocampus were trained in IA and tested for memory retention 24 h later. We found that when given into CA1 15 min before IA memory retention test, A(II), but not angiotensin IV or angiotensin(1-7) induced a dose-dependent and reversible amnesia without altering locomotor activity, exploratory behavior or anxiety state. The effect of A(II) was blocked in a dose-dependent manner by the A(II)-type 2 receptor (AT(2)) antagonist PD123319 but not by the A(II)-type 1 receptor (AT(1)) antagonist losartan. By themselves, neither PD123319 nor losartan had any effect on memory expression. Our data indicate that intra-CA1 A(II) hinders retrieval of avoidance memory through a process that involves activation of AT(2) receptors.


Asunto(s)
Angiotensina II/farmacología , Reacción de Prevención/efectos de los fármacos , Memoria/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Animales , Ansiedad/psicología , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Imidazoles/farmacología , Losartán/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Wistar
9.
Neurobiol Learn Mem ; 86(1): 100-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16488163

RESUMEN

Several evidences suggest that brain histamine is involved in memory consolidation but the actual contribution of the hippocampal histaminergic system to this process remains controversial. Here, we show that when infused into the CA1 region of the dorsal hippocampus immediately after training in an inhibitory avoidance task, but not later, histamine induced a dose-dependent promnesic effect without altering locomotor activity, exploratory behavior, anxiety state or retrieval of the avoidance response. The facilitatory effect of intra-CA1 histamine was mimicked by the histamine N-methyltransferase inhibitor SKF-91844 as well as by the H2 receptor agonist dimaprit and it was blocked completely by the H2 receptor antagonist ranitidine. Conversely, the promnesic action of histamine was unaffected by the H1 receptor antagonist pyrilamine, the H3 receptor antagonist, thioperamide, and the NMDAr polyamine-binding site antagonist ifenprodil. By themselves, ranitidine, pyrilamine, thioperamide, and ifenprodil did not affect IA memory consolidation. Our data indicate that, when given into CA1, histamine enhances memory consolidation through a mechanism that involves activation of H2 receptors; however, endogenous CA1 histamine does not seem to participate in the consolidation of IA memory at least at the post-training times analyzed.


Asunto(s)
Reacción de Prevención/fisiología , Hipocampo/fisiología , Histamina/fisiología , Receptores Histamínicos H2/fisiología , Retención en Psicología/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Histamina/administración & dosificación , Agonistas de los Receptores Histamínicos/administración & dosificación , Antagonistas de los Receptores H2 de la Histamina/administración & dosificación , Masculino , Microinyecciones , Nootrópicos/administración & dosificación , Ratas , Ratas Wistar , Receptores Histamínicos H2/efectos de los fármacos , Retención en Psicología/efectos de los fármacos
10.
Neurobiol Learn Mem ; 85(2): 192-7, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16290195

RESUMEN

In this study, we analyzed the participation of the entorhinal cortex in extinction of a learned aversive response. Rats with infusion cannulae aimed to the entorhinal cortex were trained in a one-trial step-down inhibitory avoidance task (IA) and submitted to four consecutive daily test sessions without the footshock, a procedure that induced extinction of the conditioned response in control animals. When infused into the entorhinal cortex immediately after the first extinction session at doses able to block consolidation of IA memory, the NMDA receptor antagonist, AP5 (25 nmol/side), the inhibitor of protein synthesis anisomycin (300 nmol/side) and the inhibitor of CaMKII, KN-93 (10 nmol/side), but not the MEK1/2 inhibitor PD-98059 (5 nmol/side) hindered extinction of the IA response. The same results were obtained when the interval between the first and second test session was 48 instead of 24h. The data indicate that normal functionality of the NMDA receptors, together with CaMKII activity and protein synthesis are necessary in the entorhinal cortex at the time of the first test session to generate extinction. Our results also suggest that the ERK1/2 pathway does not play a role in this process.


Asunto(s)
Reacción de Prevención/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Corteza Entorrinal/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Inhibición Psicológica , Recuerdo Mental/fisiología , Amígdala del Cerebelo/fisiología , Animales , Mapeo Encefálico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Condicionamiento Clásico/fisiología , Masculino , Ratas , Ratas Wistar
11.
Pharmacol Biochem Behav ; 80(1): 63-7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15652381

RESUMEN

Hippocampal alpha- and betaI/betaII protein kinase C (PKC) are crucial for the formation of different types of memory in several species, including that for a one trial inhibitory avoidance (IA) task in rats. Many studies, however, have shown that other brain structures besides the hippocampus, notably the basolateral amygdala (BLA) and posterior parietal cortex (PC) are also necessary for memory consolidation. Here, we examine the role of alpha- and betaI/betaII PKC in the BLA and PC on the consolidation of the memory for IA in rats. The selective inhibitor of alpha- and betaI/betaII-PKC Go 6976 and the nonselective PKC inhibitor Go 7874 were administered into these structures at different times after training at concentrations known to inhibit PKC and to produce retrograde amnesia when given into the hippocampus. Go 7874 blocked consolidation of IA memory when infused into BLA immediately and 30 min or into PC 180 to 360 min posttraining. Go 6976 caused amnesia when given into the BLA also immediately or 30 min posttraining but in the PC hindered memory retention only when infused 270 and 360 min after the training session. Our data indicate that alpha- and betaI/betaII-PKC are critical for consolidation of IA memory shortly after training in BLA and that, first other isoforms and subsequently the alpha- and betaI/betaII PKC are required 3 or more hours after training in the PC. The findings on BLA are similar to those previously reported in the hippocampus, but those on PC suggest an entirely different molecular dynamics for memory formation in that area.


Asunto(s)
Amígdala del Cerebelo/enzimología , Reacción de Prevención/fisiología , Lóbulo Parietal/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Lóbulo Parietal/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar
12.
Psychopharmacology (Berl) ; 179(3): 529-35, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15551065

RESUMEN

RATIONALE AND OBJECTIVES: Several studies suggest that the brain renin-angiotensin system is involved in memory consolidation. However, the participation of angiotensin II (AII) in this process is controversial. This is probably due to the fact that many of the studies carried out to elucidate this matter employed multitrial learning paradigms together with pretraining intracerebroventricular infusions, and therefore were unable to distinguish between consolidation and retrieval related events and lacked anatomical specificity. To circumvent this problem, we analyzed the role played in memory consolidation by AII using the hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. METHODS AND RESULTS: Rats bilaterally implanted with infusion cannulae into the CA1 region of the dorsal hippocampus (CA1) were trained in IA and tested for memory retention 24 h later. We found that when infused into CA1 immediately or 30 min after training but not later, AII produced a dose-dependent amnesic effect without altering locomotor activity, exploratory behavior or anxiety state. The amnesic effect of AII was not mimicked by angiotensin IV (AIV) and was totally blocked by the AII-type 2 receptor (AT2) antagonist, PD123319, but not by the AII-type 1 receptor (AT1) antagonist, losartan. Importantly, when infused alone, neither PD123319 nor losartan produced any effect on memory retention. CONCLUSIONS: Our data indicate that, when given into CA1, AII blocks memory formation through a mechanism involving activation of AT2 receptors; however, endogenous AII does not seem to participate in the consolidation of IA long-term memory.


Asunto(s)
Angiotensina II/administración & dosificación , Memoria/efectos de los fármacos , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/fisiología , Amnesia/inducido químicamente , Amnesia/metabolismo , Angiotensina II/toxicidad , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Relación Dosis-Respuesta a Droga , Imidazoles/farmacología , Inyecciones Intraventriculares , Masculino , Memoria/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Piridinas/farmacología , Ratas , Ratas Wistar
13.
Neurotox Res ; 6(3): 205-12, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15325959

RESUMEN

It is thought that activity-dependent changes in synaptic efficacy driven by biochemical pathways responsive to the action of the excitatory neurotransmitter glutamate are critical components of the mechanisms responsible for memory formation. In particular, the early activation of the NMDA (rNMDA) and AMPA (rAMPA) subtypes of ionotropic glutamate receptors has been demonstrated to be a necessary event for the acquisition of several types of memory. In the rat, consolidation of the long-term memory for a one-trial, step-down inhibitory avoidance task is blocked by antagonists of the rNMDA and rAMPA infused into the CA1 region of the dorsal hippocampus early after training and is associated with a rapid and reversible increase in the total number of [3H]AMPA binding sites. The learning-induced increase in [[3H]AMPA is accompanied by translocation of the GluR1 subunit of the rAMPA to the post-synaptic terminal together with its phosphorylation at Ser831. In addition, learning of the mentioned fear-motivated task induces the activation and rNMDA-dependent translocation of CaMKII to the post-synaptic density. Inhibition of this protein kinase as well as blockade of the rNMDA abolishes both the learning-induced translocation of GluR1 and its phosphorylation. Our data suggest that learning of an avoidance task enhances hippocampal rAMPA signaling through rNMDA and CaMKII-dependent mechanisms.


Asunto(s)
Miedo/fisiología , Hipocampo/metabolismo , Memoria/fisiología , Receptores de Glutamato/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal , Sitios de Unión , Western Blotting/métodos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Condicionamiento Operante/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Inhibición Psicológica , Masculino , Fosforilación , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Receptores de Glutamato/clasificación , Factores de Tiempo , Tritio/farmacocinética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacocinética
14.
Behav Neurosci ; 118(3): 563-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15174933

RESUMEN

The gamma aminobutyric acid-A (GABA-sub(A)) agonist, muscimol, the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), and the inhibitor of the extracellularly regulated kinases (ERKs), UO 126, cause retrograde amnesia when administered to the hippocampus. In the present study, the authors found that they all cause retrograde amnesia for 1-trial inhibitory avoidance, not only when infused into the dorsal CA1 region of the hippocampus, but also when infused into the basolateral amygdala or the entorhinal, parietal, and posterior cingulate cortices. The posttraining time course of the effect of each drug was, however, quite different across brain structures. Thus, in all of them, NMDA receptors and the ERK pathway are indispensable for memory consolidation, and GABA-sub(A) receptor activation inhibits memory consolidation: but in each case, their influence is interwoven differently.


Asunto(s)
Amnesia Retrógrada/inducido químicamente , Encéfalo/efectos de los fármacos , Muscimol/efectos adversos , Valina/análogos & derivados , Valina/efectos adversos , Amnesia Retrógrada/fisiopatología , Animales , Reacción de Prevención/efectos de los fármacos , Conducta Animal , Encéfalo/anatomía & histología , Butadienos/efectos adversos , Inhibidores Enzimáticos/efectos adversos , Agonistas del GABA/efectos adversos , Masculino , Inhibición Neural/efectos de los fármacos , Nitrilos/efectos adversos , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA