Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32916131

RESUMEN

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Dinámicas Mitocondriales , NAD/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación Oxidativa , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Ciclo del Ácido Cítrico/genética , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucólisis/genética , Espectrometría de Masas , Metabolómica , Microscopía Electrónica de Transmisión , Familia de Multigenes , Células-Madre Neurales/patología , Consumo de Oxígeno/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética
2.
PLoS Pathog ; 16(4): e1008458, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339205

RESUMEN

The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish. We showed that this Hyd-dependent interaction was required for the transcription of immunity-related genes that are activated by both Relish and Akirin but was dispensable for the transcription of genes that depend solely on Relish. Therefore Hyd is key in NF-κB transcriptional selectivity downstream of the IMD pathway. Drosophila depleted of Akirin or Hyd failed to express the full set of genes encoding immune-induced anti-microbial peptides and succumbed to immune challenges. We showed further that UBR5, the mammalian homolog of Hyd, was also required downstream of the NF-κB pathway for the activation of Interleukin 6 (IL6) transcription by LPS or IL-1ß in cultured human cells. Our findings link the action of an E3 ubiquitin ligase to the activation of immune effector genes, deepening our understanding of the involvement of ubiquitination in inflammation and identifying a potential target for the control of inflammatory diseases.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Proteínas Nucleares/inmunología , Factores de Transcripción/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Bacterias Gramnegativas/fisiología , Células HeLa , Humanos , Inmunidad Innata , Proteínas Nucleares/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
3.
Dev Cell ; 52(3): 251-252, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32049033

RESUMEN

Drosophila neural progenitors require the transcriptional repressor Prospero to promptly establish the neuronal fate of their daughter cells to avoid tumorigenesis. In this issue of Developmental Cell, Liu et al. (2020) find that Prospero is mitotically implanted and forms liquid-like droplets mediating HP1a condensation to permanently repress its targets.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Diferenciación Celular , Proteínas del Tejido Nervioso , Proteínas Nucleares
4.
Bio Protoc ; 10(21): e3809, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659463

RESUMEN

Cell-type specific transcriptional programs underlie the development and maintenance of organs. Not only distinct cell types within a tissue, even cells with supposedly identical cell fates show a high degree of transcriptional heterogeneity. Inevitable, low cell numbers are a major hurdle to study transcriptomes of pure cell populations. Here we describe DigiTAG, a high-throughput method that combines transposase fragmentation and molecular barcoding to retrieve high quality transcriptome data of rare cell types in Drosophila melanogaster. The protocol showcases how DigiTAG can be used to analyse the transcriptome of rare neural stem cells (type II neuroblasts) of Drosophila larval brains, but can also be utilized for other cell types or model systems.

5.
Development ; 146(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30665888

RESUMEN

Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5 days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.


Asunto(s)
Cinamatos/química , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Organoides/citología , Ambystoma mexicanum , Animales , Drosophila melanogaster , Humanos , Microscopía Fluorescente , Xenopus laevis , Pez Cebra
6.
J Cell Biol ; 217(9): 3285-3300, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29959232

RESUMEN

Drosophila melanogaster neural stem cells (neuroblasts [NBs]) divide asymmetrically by differentially segregating protein determinants into their daughter cells. Although the machinery for asymmetric protein segregation is well understood, the events that reprogram one of the two daughter cells toward terminal differentiation are less clear. In this study, we use time-resolved transcriptional profiling to identify the earliest transcriptional differences between the daughter cells on their way toward distinct fates. By screening for coregulated protein complexes, we identify vacuolar-type H+-ATPase (v-ATPase) among the first and most significantly down-regulated complexes in differentiating daughter cells. We show that v-ATPase is essential for NB growth and persistent activity of the Notch signaling pathway. Our data suggest that v-ATPase and Notch form a regulatory loop that acts in multiple stem cell lineages both during nervous system development and in the adult gut. We provide a unique resource for investigating neural stem cell biology and demonstrate that cell fate changes can be induced by transcriptional regulation of basic, cell-essential pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Transcripción Genética/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Células-Madre Neurales/citología , Neurogénesis/fisiología , Transducción de Señal , Transcriptoma/genética
7.
Elife ; 72018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29580384

RESUMEN

Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program.


Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/fisiología , ARN Largo no Codificante/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo
8.
EMBO Rep ; 19(1): 102-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191977

RESUMEN

The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis/genética , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Sistemas CRISPR-Cas , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Edición Génica , Regulación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Células-Madre Neurales/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
9.
Int J Dev Biol ; 61(3-4-5): 319-327, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28621429

RESUMEN

The ability of metazoans to combat pathogenic infection involves both systemic and local responses to the invading pathogens. Ubiquitin and SUMO pathways molecularly regulate the response to infection, immune signaling and gene expression. Here, we report that Degringolade (Dgrn, CG10981), a SUMO-targeted ubiquitin ligase connecting the two pathways, is essential for the innate immunity response in Drosophila. dgrnDK null and heterozygous mutant adult flies are severely immune-compromised and succumb rapidly to both pathogenic bacteria and fungi infections. The sensitivity to infection stems from the inability to produce multiple anti-microbial peptides, and transcriptional analyses suggest that the overexpression of Dgrn enhances the transcriptional output of the NF-ĸB related Toll and immune deficiency (IMD)-pathways. Moreover, expression of Dgrn alleviated the inhibitory impact of the cytoplasmic NF-ĸB inhibitor Cactus and the nuclear co-repressor Groucho/TLE (Gro). Additionally, we found that Dgrn is required for the local regenerative response of the mid-gut following infection. Upon oral infection, dgrn mutant flies fail to activate the Delta-Notch pathway in stem cells and enteroblasts, and are unable to regenerate and replace the damaged and dying enterocytes. Interestingly, the ubiquitin-specific protease CG8334 (dUSP32/dUSP11) antagonizes Dgrn activity in the gut, and halving the dose of CG8334 restores Delta-Notch signaling and rescues the lethality observed in dgrn mutants. Collectively, our data suggest that Dgrn is essential for both systemic and local tissue response to infection.


Asunto(s)
Proteínas de Drosophila/metabolismo , FN-kappa B/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Anticuerpos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Línea Celular , Cruzamientos Genéticos , Citoplasma/metabolismo , Drosophila , Enterocitos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Hidrolasas/metabolismo , Inmunidad Innata , Mucosa Intestinal/metabolismo , Mutación , Plásmidos , Interferencia de ARN , Transducción de Señal , Ubiquitina/metabolismo
10.
EMBO J ; 33(20): 2349-62, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25180232

RESUMEN

The network of NF-κB-dependent transcription that activates both pro- and anti-inflammatory genes in mammals is still unclear. As NF-κB factors are evolutionarily conserved, we used Drosophila to understand this network. The NF-κB transcription factor Relish activates effector gene expression following Gram-negative bacterial immune challenge. Here, we show, using a genome-wide approach, that the conserved nuclear protein Akirin is a NF-κB co-factor required for the activation of a subset of Relish-dependent genes correlating with the presence of H3K4ac epigenetic marks. A large-scale unbiased proteomic analysis revealed that Akirin orchestrates NF-κB transcriptional selectivity through the recruitment of the Osa-containing-SWI/SNF-like Brahma complex (BAP). Immune challenge in Drosophila shows that Akirin is required for the transcription of a subset of effector genes, but dispensable for the transcription of genes that are negative regulators of the innate immune response. Therefore, Akirins act as molecular selectors specifying the choice between subsets of NF-κB target genes. The discovery of this mechanism, conserved in mammals, paves the way for the establishment of more specific and less toxic anti-inflammatory drugs targeting pro-inflammatory genes.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/genética , Inmunidad Innata , FN-kappa B/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Mutación , FN-kappa B/metabolismo , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Proteómica , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
11.
Proc Natl Acad Sci U S A ; 110(8): 2957-62, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23378635

RESUMEN

Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/inmunología , Tolerancia Inmunológica/genética , Proteínas de la Membrana/genética , Animales , Longevidad
12.
J Immunol ; 190(2): 650-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23255357

RESUMEN

The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity and has led to some important discoveries about the sensing and signaling of microbial infections. The response of Drosophila to virus infections remains poorly characterized and appears to involve two facets. On the one hand, RNA interference involves the recognition and processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. To clarify the contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNA viruses belonging to different families. Our results reveal a unique susceptibility of hop mutant flies to infection by Drosophila C virus and cricket paralysis virus, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to many viruses, including the DNA virus invertebrate iridescent virus 6. Genome-wide microarray analysis confirmed that different sets of genes were induced following infection by Drosophila C virus or by two unrelated RNA viruses, Flock House virus and Sindbis virus. Overall, our data reveal that RNA interference is an efficient antiviral mechanism, operating against a large range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus specific.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Interferencia de ARN/inmunología , Alphavirus/inmunología , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/prevención & control , Animales , Animales Modificados Genéticamente , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/prevención & control , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/virología , Regulación de la Expresión Génica , Quinasas Janus/metabolismo , Masculino , Nodaviridae/inmunología , ARN Helicasas/genética , ARN Helicasas/inmunología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , Ribonucleasa III/genética , Ribonucleasa III/inmunología , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 285(45): 34773-80, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20829351

RESUMEN

Toll-like receptor 8 (TLR8), which is expressed primarily in myeloid cells, plays a central role in initiating immune responses to viral single-stranded RNA. Despite the great interest in the field of TLR8 research, very little is known in terms of TLR8 biology and its transcriptional regulation. Here, we describe the isolation of the hTLR8 promoter and the characterization of the molecular mechanisms involved in its regulation. Reporter gene analysis and ChIP assays demonstrated that the hTLR8 regulation of the basal transcription is regulated via three C/EBP cis-acting elements that required C/EBPδ and C/EBPß activity. In addition, we observed that R848 stimulation increases TLR8 transcriptional activity via an enhanced binding of C/EBPδ, and not C/EBPß, to its responsive sites within the TLR8 promoter. Moreover, we showed that IFN-γ also increased TLR8 transcription activity via the binding of STAT1 transcription factor to IFN-γ activated sequence elements on the TLR8 promoter and enhanced TLR8 functionality. These results shed new light on the mechanisms involved during TLR8-mediated innate immune response.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/metabolismo , Elementos de Respuesta/fisiología , Factor de Transcripción STAT1/metabolismo , Receptor Toll-Like 8/biosíntesis , Transcripción Genética/fisiología , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/inmunología , Línea Celular , Perfilación de la Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Viral/inmunología , ARN Viral/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA