Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancers (Basel) ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473273

RESUMEN

Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.

2.
Eur J Cell Biol ; 102(3): 151341, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459799

RESUMEN

ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-ß-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Histona Desacetilasas , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Vorinostat/farmacología
3.
Cell Death Dis ; 14(7): 405, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414747

RESUMEN

Protein post-translational modification by the small ubiquitin-like modifier (SUMO) regulates the stability, subcellular localization, and interactions of protein substrates with consequences on cellular responses including epithelial-mesenchymal transition (EMT). Transforming growth factor beta (TGFß) is a potent inducer of EMT with implications for cancer invasion and metastasis. The transcriptional coregulator SnoN suppresses TGFß-induced EMT-associated responses in a sumoylation-dependent manner, but the underlying mechanisms have remained largely unknown. Here, we find that sumoylation promotes the interaction of SnoN with the epigenetic regulators histone deacetylase 1 (HDAC1) and histone acetylase p300 in epithelial cells. In gain and loss of function studies, HDAC1 suppresses, whereas p300 promotes, TGFß-induced morphogenetic changes associated with EMT-related events in three-dimensional multicellular organoids derived from mammary epithelial cells or carcinomas. These findings suggest that sumoylated SnoN acts via the regulation of histone acetylation to modulate EMT-related effects in breast cell organoids. Our study may facilitate the discovery of new biomarkers and therapeutics in breast cancer and other epithelial cell-derived cancers.


Asunto(s)
Transición Epitelial-Mesenquimal , Histona Desacetilasa 1 , Histona Desacetilasa 1/genética , Organoides/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fenotipo
5.
Cell Death Differ ; 28(1): 267-282, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32770107

RESUMEN

SUMO E3 ligases specify protein substrates for SUMOylation. The SUMO E3 ligases PIAS1 and TIF1γ target the transcriptional regulator SnoN for SUMOylation leading to suppression of epithelial-mesenchymal transition (EMT). Whether and how TIF1γ and PIAS1 might coordinate SnoN SUMOylation and regulation of EMT remained unknown. Here, we reveal that SnoN associates simultaneously with both TIF1γ and PIAS1, leading to a trimeric protein complex. Hence, PIAS1 and TIF1γ collaborate to promote the SUMOylation of SnoN. Importantly, loss of function studies of PIAS1 and TIF1γ suggest that these E3 ligases act in an interdependent manner to suppress EMT of breast cell-derived tissue organoids. Collectively, our findings unveil a novel mechanism by which SUMO E3 ligases coordinate substrate SUMOylation with biological implications.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación/genética , Factores de Transcripción/genética , Animales , Técnicas de Cultivo Tridimensional de Células , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Unión Proteica , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cancers (Basel) ; 12(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291370

RESUMEN

Various components of the tumor microenvironment (TME) play a critical role in promoting tumorigenesis, progression, and metastasis. One of the primary functions of the TME is to stimulate an immunosuppressive environment around the tumor through multiple mechanisms including the activation of the transforming growth factor-beta (TGF-ß) signaling pathway. Cancer-associated fibroblasts (CAFs) are key cells in the TME that regulate the secretion of extracellular matrix (ECM) components under the influence of TGF-ß. Recent reports from our group and others have described an ECM-related and CAF-associated novel gene signature that can predict resistance to immune checkpoint blockade (ICB). Importantly, studies have begun to test whether targeting some of these CAF-associated components can be used as a combinatorial approach with ICB. This perspective summarizes recent advances in our understanding of CAF and TGF-ß-regulated immunosuppressive mechanisms and ways to target such signaling in cancer.

7.
Cell Death Dis ; 11(8): 704, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843642

RESUMEN

Alternative splicing contributes to diversification of gene function, yet consequences of splicing on functions of specific gene products is poorly understood. The major transcription factor TCF7L2 undergoes alternative splicing but the biological significance of TCF7L2 isoforms has remained largely to be elucidated. Here, we find that the TCF7L2 E-isoforms maintain, whereas the M and S isoforms disrupt morphogenesis of 3D-epithelial cell-derived organoids via regulation of epithelial-mesenchymal transition (EMT). Remarkably, TCF7L2E2 antagonizes, whereas TCF7L2M2/S2 promotes EMT-like effects in epithelial cells induced by transforming growth factor beta (TGFß) signaling. In addition, we find TGFß signaling reduces the proportion of TCF7L2E to TCF7L2M/S protein in cells undergoing EMT. We also find that TCF7L2 operates via TGFß-Smad3 signaling to regulate EMT. Collectively, our findings unveil novel isoform-specific functions for the major transcription factor TCF7L2 and provide novel links between TCF7L2 and TGFß signaling in the control of EMT-like responses and epithelial tissue morphogenesis.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Organoides/fisiología , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Línea Celular , Células Epiteliales/metabolismo , Humanos , Ratones , Morfogénesis/efectos de los fármacos , Isoformas de Proteínas , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1
8.
PLoS One ; 14(7): e0219697, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361756

RESUMEN

Metastasis is the major cause of cancer-related morbidity and mortality. The ability of cancer cells to become invasive and migratory contribute significantly to metastatic growth, which necessitates the identification of novel anti-migratory and anti-invasive therapeutic approaches. Proteoglycan 4 (PRG4), a mucin-like glycoprotein, contributes to joint synovial homeostasis through its friction-reducing and anti-adhesive properties. Adhesion to surrounding extracellular matrix (ECM) components is critical for cancer cells to invade the ECM and eventually become metastatic, raising the question whether PRG4 has an anti-invasive effect on cancer cells. Here, we report that a full-length recombinant human PRG4 (rhPRG4) suppresses the ability of the secreted protein transforming growth factor beta (TGFß) to induce phenotypic disruption of three-dimensional human breast cancer cell-derived organoids by reducing ligand-induced cell invasion. In mechanistic studies, we find that rhPRG4 suppresses TGFß-induced invasiveness of cancer cells by inhibiting the downstream hyaluronan (HA)-cell surface cluster of differentiation 44 (CD44) signalling axis. Furthermore, we find that rhPRG4 represses TGFß-dependent increase in the protein abundance of CD44 and of the enzyme HAS2, which is involved in HA biosynthesis. It is widely accepted that TGFß has both tumor suppressing and tumor promoting roles in cancer. The novel finding that rhPRG4 opposes HAS2 and CD44 induction by TGFß has implications for downregulating the tumor promoting roles, while maintaining the tumor suppressive aspects of TGFß actions. Finally, these findings point to rhPRG4's potential clinical utility as a therapeutic treatment for invasive and metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Proteoglicanos/metabolismo , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Peso Molecular , Invasividad Neoplásica , Organoides/efectos de los fármacos , Organoides/patología , Proteínas Recombinantes/farmacología , Proteínas Smad/metabolismo
9.
J Neurosci ; 39(1): 44-62, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30425119

RESUMEN

Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.


Asunto(s)
Encéfalo/citología , Proliferación Celular , Cerebelo/fisiología , Células-Madre Neurales/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Animales , Conducta Animal , Parpadeo/fisiología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/genética , Cerebelo/citología , Biología Computacional , Gránulos Citoplasmáticos/fisiología , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Genes myc/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/fisiología
10.
Cancers (Basel) ; 10(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096838

RESUMEN

Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFß) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFß to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFß-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.

11.
Mol Pharmacol ; 92(5): 519-532, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28842394

RESUMEN

Transforming growth factor-ß (TGF-ß), serine proteinases such as trypsin, and proteinase-activated receptor 2 (PAR2) promote tumor development by stimulating invasion and metastasis. Previously, we found that in cancer cells derived from pancreatic ductal adenocarcinoma (PDAC) PAR2 protein is necessary for TGF-ß1-dependent cell motility. Here, we show in the same cells that, conversely, the type I TGF-ß receptor activin receptor-like kinase 5 is dispensable for trypsin and PAR2 activating peptide (PAR2-AP)-induced migration. To reveal whether Gq-calcium signaling is a prerequisite for PAR2 to enhance TGF-ß signaling, we investigated the effects of PAR2-APs, PAR2 mutation and PAR2 inhibitors on TGF-ß1-induced migration, reporter gene activity, and Smad activation. Stimulation of cells with PAR2-AP alone failed to enhance basal or TGF-ß1-induced C-terminal phosphorylation of Smad3, Smad-dependent activity of a luciferase reporter gene, and cell migration. Consistently, in complementary loss of function studies, abrogation of the PAR2-Gq-calcium signaling arm failed to suppress TGF-ß1-induced cell migration, reporter gene activity, and Smad3 activation. Together, our findings suggest that the calcium-regulating motif is not required for PAR2 to synergize with TGF-ß1 to promote cell motility. Additional experiments in PDAC cells revealed that PAR2 and TGF-ß1 synergy may involve TGF-ß1 induction of enzymes that cause autocrine cleavage/activation of PAR2, possibly through a biased signaling function. Our results suggest that although reducing PAR2 protein expression may potentially block TGF-ß's prooncogenic function, inhibiting PAR2-Gq-calcium signaling alone would not be sufficient to achieve this effect.


Asunto(s)
Señalización del Calcio/fisiología , Movimiento Celular/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células HEK293 , Humanos , Oligopéptidos/farmacología , Receptor PAR-2 , Receptor Tipo I de Factor de Crecimiento Transformador beta
12.
PLoS One ; 12(5): e0177639, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493978

RESUMEN

Metastasis is the ultimate cause of breast cancer related mortality. Epithelial-mesenchymal transition (EMT) is thought to play a crucial role in the metastatic potential of breast cancer. Growing evidence has implicated the SUMO E3 ligase PIAS1 in the regulation of EMT in mammary epithelial cells and breast cancer metastasis. However, the relevance of PIAS1 in human cancer and mechanisms by which PIAS1 might regulate breast cancer metastasis remain to be elucidated. Using tissue-microarray analysis (TMA), we report that the protein abundance and subcellular localization of PIAS1 correlate with disease specific overall survival of a cohort of breast cancer patients. In mechanistic studies, we find that PIAS1 acts via sumoylation of the transcriptional regulator SnoN to suppress invasive growth of MDA-MB-231 human breast cancer cell-derived organoids. Our studies thus identify the SUMO E3 ligase PIAS1 as a prognostic biomarker in breast cancer, and suggest a potential role for the PIAS1-SnoN sumoylation pathway in controlling breast cancer metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Femenino , Células HEK293 , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Organoides/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Sumoilación/efectos de los fármacos , Análisis de Supervivencia , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/farmacología
13.
Oncotarget ; 8(13): 21001-21014, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423498

RESUMEN

Tumor metastasis profoundly reduces the survival of breast cancer patients, but the mechanisms underlying breast cancer invasiveness and metastasis are incompletely understood. Here, we report that the E3 ubiquitin ligase Smurf2 acts in a sumoylation-dependent manner to suppress the invasive behavior of MDA-MB-231 human breast cancer cell-derived organoids. We also find that the SUMO E3 ligase PIAS3 inhibits the invasive growth of breast cancer cell-derived organoids. In mechanistic studies, PIAS3 maintains breast cancer organoids in a non-invasive state via sumoylation of Smurf2. Importantly, the E3 ubiquitin ligase activity is required for sumoylated Smurf2 to suppress the invasive growth of breast cancer-cell derived organoids. Collectively, our findings define a novel role for the PIAS3-Smurf2 sumoylation pathway in the suppression of breast cancer cell invasiveness. These findings lay the foundation for the development of novel biomarkers and targeted therapeutic approaches in breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/prevención & control , Chaperonas Moleculares/metabolismo , Organoides/patología , Proteínas Inhibidoras de STAT Activados/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Proliferación Celular , Femenino , Humanos , Invasividad Neoplásica , Organoides/metabolismo , Transducción de Señal , Sumoilación , Células Tumorales Cultivadas
14.
J Biol Chem ; 289(36): 25067-78, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25059663

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process that contributes to epithelial tissue morphogenesis during normal development and in tumor invasiveness and metastasis. The transcriptional regulator SnoN robustly influences EMT in response to the cytokine TGFß, but the mechanisms that regulate the fundamental role of SnoN in TGFß-induced EMT are not completely understood. Here we employ interaction proteomics to uncover the signaling protein TIF1γ as a specific interactor of SnoN1 but not the closely related isoform SnoN2. A 16-amino acid peptide within a unique region of SnoN1 mediates the interaction of SnoN1 with TIF1γ. Strikingly, although TIF1γ is thought to act as a ubiquitin E3 ligase, we find that TIF1γ operates as a small ubiquitin-like modifier (SUMO) E3 ligase that promotes the sumoylation of SnoN1 at distinct lysine residues. Importantly, TIF1γ-induced sumoylation is required for the ability of SnoN1 to suppress TGFß-induced EMT, as assayed by the disruption of the morphogenesis of acini in a physiologically relevant three-dimensional model of normal murine mammary gland (NMuMG) epithelial cells. Collectively, our findings define a novel TIF1γ-SnoN1 sumoylation pathway that plays a critical role in EMT and has important implications for our understanding of TGFß signaling and diverse biological processes in normal development and cancer biology.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sumoilación/efectos de los fármacos , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
15.
Carcinogenesis ; 35(10): 2214-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903338

RESUMEN

The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 -5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis and senescence, but how the proteins themselves are regulated is not yet clear. Here, we find a small ubiquitin-like modification (SUMOylation) of the ING1b protein and identify lysine 193 (K193) as the preferred ING1b SUMO acceptor site. We also show that PIAS4 is the E3 SUMO ligase responsible for ING1b SUMOylation on K193. Sequence alignment reveals that the SUMO consensus site on ING1b contains a phosphorylation-dependent SUMOylation motif (PDSM) and our data indicate that the SUMOylation on K193 is enhanced by the S199D phosphomimic mutant. Using an ING1b protein mutated at the major SUMOylation site (ING1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Sumoilación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Citocinas/genética , Regulación de la Expresión Génica , Genes Supresores de Tumor , Células HEK293 , Humanos , Lisina/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas de Unión al ARN/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/genética
16.
Oncoscience ; 1(3): 229-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25594015

RESUMEN

Tumor metastasis contributes to the grave morbidity and mortality of cancer, but the mechanisms underlying tumor cell invasiveness and metastasis remain incompletely understood. Here, we report that expression of the SUMO E3 ligase PIAS1 suppresses TGFß-induced activation of the matrix metalloproteinase MMP2 in human breast cancer cells. We also find that knockdown of endogenous PIAS1 or inhibition of its SUMO E3 ligase activity stimulates the ability of TGFß to induce an aggressive phenotype in three-dimensional breast cancer cell organoids. Importantly, inhibition of the SUMO E3-ligase activity of PIAS1 in breast cancer cells promotes metastases in mice in vivo. Collectively, our findings define a novel and critical role for the SUMO E3 ligase PIAS1 in the regulation of the invasive and metastatic potential of malignant breast cancer cells. These findings advance our understanding of cancer invasiveness and metastasis with potential implications for the development of biomarkers and therapies in breast cancer.

17.
PLoS One ; 8(6): e67178, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840619

RESUMEN

Transforming growth factor-beta (TGFß) is a secreted polypeptide that plays essential roles in cellular development and homeostasis. Although mechanisms of TGFß-induced responses have been characterized, our understanding of TGFß signaling remains incomplete. Here, we uncover a novel function for the protein kinase NDR1 (nuclear Dbf2-related 1) in TGFß responses. Using an immunopurification approach, we find that NDR1 associates with SnoN, a key component of TGFß signaling. Knockdown of NDR1 by RNA interference promotes the ability of TGFß to induce transcription and cell cycle arrest in NMuMG mammary epithelial cells. Conversely, expression of NDR1 represses TGFß-induced transcription and inhibits the ability of TGFß to induce cell cycle arrest in NMuMG cells. Mechanistically, we find that NDR1 acts in a kinase-dependent manner to suppress the ability of TGFß to induce the phosphorylation and consequent nuclear accumulation of Smad2, which is critical for TGFß-induced transcription and responses. Strikingly, we also find that TGFß reciprocally regulates NDR1, whereby TGFß triggers the degradation of NDR1 protein. Collectively, our findings define a novel and intimate link between the protein kinase NDR1 and TGFß signaling. NDR1 suppresses TGFß-induced transcription and cell cycle arrest, and counteracting NDR1's negative regulation, TGFß signaling induces the downregulation of NDR1 protein. These findings advance our understanding of TGFß signaling, with important implications in development and tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Puntos de Control del Ciclo Celular , Línea Celular , Proliferación Celular , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteína Smad2/metabolismo , Transcripción Genética
18.
J Immunol ; 190(3): 1239-49, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264657

RESUMEN

Tubulointerstitial inflammation and fibrosis are strongly associated with the outcome of chronic kidney disease. We recently demonstrated that the NOD-like receptor, pyrin domain containing-3 (NLRP3) contributes to renal inflammation, injury, and fibrosis following unilateral ureteric obstruction in mice. NLRP3 expression in renal tubular epithelial cells (TECs) was found to be an important component of experimental disease pathogenesis, although the biology of NLRP3 in epithelial cells is unknown. In human and mouse primary renal TECs, NLRP3 expression was increased in response to TGF-ß1 stimulation and associated with epithelial-mesenchymal transition (EMT) and the expression of α-smooth muscle actin (αSMA) and matrix metalloproteinase (MMP) 9. TGF-ß1-induced EMT and the induction of MMP-9 and αSMA were significantly decreased in mouse Nlrp3(-/-) renal TECs, suggesting a role for Nlrp3 in TGF-ß-dependent signaling. Although apoptosis-associated speck-like protein containing a CARD domain(-/-) TECs demonstrated a phenotype similar to that of Nlrp3(-/-) cells in response to TGF-ß1, the effect of Nlrp3 on MMP-9 and αSMA expression was inflammasome independent, as IL-1ß, IL-18, MyD88, and caspase-1 were dispensable. Smad2 and Smad3 phosphorylation in response to TGF-ß1 was attenuated in Nlrp3(-/-) and apoptosis-associated speck-like protein containing a CARD domain(-/-) cells, accounting for the dampened EMT and TGF-ß1 responsiveness in these cells. Consistent with these findings, overexpression of NLRP3 in 293T cells resulted in increased Smad3 phosphorylation and activity. Taken together, these data support a novel and direct role for NLRP3 in promoting TGF-ß signaling and R-Smad activation in epithelial cells independent of the inflammasome.


Asunto(s)
Proteínas Portadoras/fisiología , Células Epiteliales/inmunología , Transición Epitelial-Mesenquimal/fisiología , Inflamasomas/fisiología , Túbulos Renales Proximales/inmunología , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Caspasa 1/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/farmacología , Túbulos Renales Proximales/metabolismo , Metaloproteinasas de la Matriz/biosíntesis , Metaloproteinasas de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Nefritis Intersticial/inmunología , Nefritis Intersticial/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
19.
PLoS One ; 7(7): e40684, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22808232

RESUMEN

The inhibitor of growth (ING) family of zinc-finger plant homeodomain (PHD)-containing chromatin remodeling protein controls gene expression and has been implicated in the regulation of cell proliferation and death. However, the role of ING proteins in cell differentiation remains largely unexplored. Here, we identify an essential function for ING2 in muscle differentiation. We find that knockdown of ING2 by RNA interference (RNAi) blocks the differentiation of C2C12 cells into myotubes, suggesting that ING2 regulates the myogenic differentiation program. We also characterize a mechanism by which ING2 drives muscle differentiation. In structure-function analyses, we find that the leucine zipper motif of ING2 contributes to ING2-dependent muscle differentiation. By contrast, the PHD domain, which recognizes the histone H3K4me3 epigenetic mark, inhibits the ability of ING2 to induce muscle differentiation. We also find that the Sin3A-HDAC1 chromatin remodeling complex, which interacts with ING2, plays a critical role in ING2-dependent muscle differentiation. These findings define a novel function for ING2 in muscle differentiation and bear significant implications for our understanding of the role of the ING protein family in cell differentiation and tumor suppression.


Asunto(s)
Diferenciación Celular , Ensamble y Desensamble de Cromatina , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Proteínas de Homeodominio/química , Humanos , Leucina Zippers , Lisina/metabolismo , Metilación , Ratones , Células Musculares/citología , Células Musculares/metabolismo , Desarrollo de Músculos , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/química
20.
FEBS Lett ; 586(14): 1977-83, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22710173

RESUMEN

The transcriptional regulator SnoN plays a fundamental role as a modulator of transforming growth factor beta (TGFß)-induced signal transduction and biological responses. In recent years, novel functions of SnoN have been discovered in both TGFß-dependent and TGFß-independent settings in proliferating cells and postmitotic neurons. Accumulating evidence suggests that SnoN plays a dual role as a corepressor or coactivator of TGFß-induced transcription. Accordingly, SnoN exerts oncogenic or tumor-suppressive effects in epithelial tissues. At the cellular level, SnoN antagonizes or mediates the ability of TGFß to induce cell cycle arrest in a cell-type specific manner. SnoN also exerts key effects on epithelial-mesenchymal transition (EMT), with implications in cancer biology. Recent studies have expanded SnoN functions to postmitotic neurons, where SnoN orchestrates key aspects of neuronal development in the mammalian brain, from axon growth and branching to neuronal migration and positioning. In this review, we will highlight our understanding of SnoN biology at the crossroads of cancer biology and neurobiology.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Axones/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Modelos Biológicos , Modelos Neurológicos , Neoplasias/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA