Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Nat Commun ; 15(1): 5119, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38879572

One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.


Adenosine Triphosphate , Endocytosis , Endoplasmic Reticulum , ErbB Receptors , Mitochondria , Signal Transduction , Mitochondria/metabolism , ErbB Receptors/metabolism , Endoplasmic Reticulum/metabolism , Humans , Adenosine Triphosphate/metabolism , Animals , Cell Membrane/metabolism , Calcium Signaling/physiology , Calcium/metabolism
2.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Article En | MEDLINE | ID: mdl-38458178

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Extracellular Vesicles , Hematopoietic Stem Cells , NADP/metabolism , Hematopoietic Stem Cells/metabolism , Cell Differentiation/physiology , Cell Self Renewal
3.
J Nanobiotechnology ; 22(1): 68, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38369472

BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.


Antioxidants , Malus , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Calcium/metabolism , Vegetables , Proteomics , Malus/metabolism , Signal Transduction
4.
J Autoimmun ; 143: 103159, 2024 02.
Article En | MEDLINE | ID: mdl-38141420

OBJECTIVES: To evaluate the in vitro effect of tofacitinib on autophagy activity of psoriatic arthritis (PsA) fibroblast-like synoviocytes (FLS), and to confirm its activity on inflammatory and invasive properties of FLS and synovial cells, deepening the impact on mitochondrial function. METHODS: FLS, peripheral blood mononuclear cells (PBMCs), and synovial cells from active PsA patients were cultured with tofacitinib 1 µM or vehicle control for 24 h. Autophagy was measured by Western blot and by fluorescence microscopy. Chemokines/cytokines released into culture supernatants were quantified by ELISA, while invasive properties of FLS by migration assays. Specific mitochondrial probes were adopted to measure intracellular reactive oxygen species (ROS), mitochondrial potential, morphology, turnover and mitophagy. Oxygen consumption rate (OCR), reflecting oxidative phosphorylation, was quantified using the Seahorse technology. Differences were determined by adopting the non-parametric Wilcoxon signed rank test. RESULTS: 18 patients with moderately-to-severely active PsA were enrolled. Tofacitinib significantly increased the levels of the autophagy markers LC3-II and ATG7 in PsA FLS compared to vehicle control, suggesting an increase in spontaneous autophagy activity; no effect was highlighted in PBMCs and synovial cells cultures. Tofacitinib reduced migration properties of PsA FLS, and reduced MCP-1 and IL-6 release into FLS and synovial cells cultures supernatants. Furthermore, tofacitinib decreased intracellular ROS production, increased basal OCR, ATP production and maximal respiratory capacity, and enhanced mitophagy and mitochondrial turnover. CONCLUSIONS: The JAK inhibitor tofacitinib reduces the pro-invasive and pro-inflammatory properties of PsA FLS. Autophagy induction and mitochondrial quality control modulation by tofacitinib might contribute to FLS function restoration.


Arthritis, Psoriatic , Piperidines , Pyrimidines , Synoviocytes , Humans , Arthritis, Psoriatic/drug therapy , Reactive Oxygen Species/metabolism , Leukocytes, Mononuclear , Signal Transduction , Autophagy , Fibroblasts/metabolism , Mitochondria , Cells, Cultured , Synovial Membrane/metabolism
5.
Cell Death Differ ; 30(2): 429-441, 2023 02.
Article En | MEDLINE | ID: mdl-36450825

Uncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth. PML mislocalization from MAMs elicits an uncontrolled NLRP3 activation, and consequent cytokines blast fueling cancer and worsening the tumor prognosis in different human cancers. New mechanistic insights are provided for the PML-P2X7R-NLRP3 axis to govern the TME in human carcinogenesis, fostering new targeted therapeutic approaches.


NLR Family, Pyrin Domain-Containing 3 Protein , Promyelocytic Leukemia Protein , Receptors, Purinergic P2X7 , Tumor Microenvironment , Humans , Cytokines , Inflammasomes , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, Purinergic P2X7/metabolism , Promyelocytic Leukemia Protein/metabolism
6.
Pharmaceutics ; 14(5)2022 Apr 21.
Article En | MEDLINE | ID: mdl-35631496

Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.

7.
Pharmacol Res ; 177: 106119, 2022 03.
Article En | MEDLINE | ID: mdl-35131483

Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.


Cardiomyopathies , Heart Failure , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cardiomyopathies/metabolism , Homeostasis , Humans , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum
8.
ACS Nanosci Au ; 2(4): 284-296, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-37102062

In the past few decades, nanomedicine research has advanced dramatically. In spite of this, traditional nanomedicine faces major obstacles, such as blood-brain barriers, low concentrations at target sites, and rapid removal from the body. Exosomes as natural extracellular vesicles contain special bioactive molecules for cell-to-cell communications and nervous tissue function, which could overcome the challenges of nanoparticles. Most recently, microRNAs, long noncoding RNA, and circulating RNA of exosomes have been appealing because of their critical effect on the molecular pathway of target cells. In this review, we have summarized the important role of exosomes of noncoding RNAs in the occurrence of brain diseases.

9.
Nat Rev Mol Cell Biol ; 23(4): 266-285, 2022 04.
Article En | MEDLINE | ID: mdl-34880425

Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.


Mitochondrial Membrane Transport Proteins , Mitochondrial Transmembrane Permeability-Driven Necrosis , Animals , Humans , Adenosine Triphosphate , Mammals , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Permeability Transition Pore
10.
Int Rev Cell Mol Biol ; 362: 111-140, 2021.
Article En | MEDLINE | ID: mdl-34253293

Hematopoiesis is based on the existence of hematopoietic stem cells (HSC) with the capacity to self-proliferate and self-renew or to differentiate into specialized cells. The hematopoietic niche is the essential microenvironment where stem cells reside and integrate various stimuli to determine their fate. Recent studies have identified niche containing high level of calcium (Ca2+) suggesting that HSCs are sensitive to Ca2+. This is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Advanced methods for measuring its concentrations, genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information into its specific roles to integrate signaling into an array of mechanisms that determine HSC identity, lineage potential, maintenance, and self-renewal. Accumulating and contrasting evidence, are revealing Ca2+ as a previously unacknowledged feature of HSC, involved in functional maintenance, by regulating multiple actors including transcription and epigenetic factors, Ca2+-dependent kinases and mitochondrial physiology. Mitochondria are significant participants in HSC functions and their responsiveness to cellular demands is controlled to a significant extent via Ca2+ signals. Recent reports indicate that mitochondrial Ca2+ uptake also controls HSC fate. These observations reveal a physiological feature of hematopoietic stem cells that can be harnessed to improve HSC-related disease. In this review, we discuss the current knowledge Ca2+ in hematopoietic stem cell focusing on its potential involvement in proliferation, self-renewal and maintenance of HSC and discuss future research directions.


Calcium/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeostasis , Mitochondria/metabolism , Animals , Hematopoiesis , Humans
11.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article En | MEDLINE | ID: mdl-34099564

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.


Antipsychotic Agents/therapeutic use , Autophagy , Mitophagy , Multiple Sclerosis/drug therapy , Animals , Antipsychotic Agents/pharmacology , Autophagy/drug effects , Autophagy-Related Proteins/blood , Autophagy-Related Proteins/cerebrospinal fluid , Axons/drug effects , Axons/metabolism , Biomarkers/metabolism , Clozapine/pharmacology , Cytokines/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Glucose/metabolism , Haloperidol/pharmacology , Inflammation/pathology , Interleukin-1beta/metabolism , Mitochondria/metabolism , Mitophagy/drug effects , Models, Biological , Motor Activity/drug effects , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/physiopathology , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Stress, Physiological/drug effects , Tumor Necrosis Factor-alpha/metabolism
12.
Methods Mol Biol ; 2310: 113-159, 2021.
Article En | MEDLINE | ID: mdl-34096002

Mitochondria are dynamic organelles that participate in a broad array of molecular functions within the cell. They are responsible for maintaining the appropriate energetic levels and control the cellular homeostasis throughout the generation of intermediary metabolites. Preserving a healthy and functional mitochondrial population is of fundamental importance throughout the life of the cells under pathophysiological conditions. Hence, cells have evolved fine-tuned mechanisms of quality control that help to preserve the right amount of functional mitochondria to meet the demand of the cell. The specific recycling of mitochondria by autophagy, termed mitophagy, represents the primary contributor to mitochondrial quality control. During this process, damaged or unnecessary mitochondria are recognized and selectively degraded. In the past few years, the knowledge in mitophagy has seen rapid progress, and a growing body of evidence confirms that mitophagy holds a central role in controlling cellular functions and the progression of various human diseases.In this chapter, we will discuss the pathophysiological roles of mitophagy and provide a general overview of the current methods used to monitor and quantify mitophagy. We will also outline the main established approaches to investigate the mitochondrial function, metabolism, morphology, and protein damage.


Cardiovascular Diseases/pathology , Microscopy, Confocal , Microscopy, Fluorescence , Mitochondria/pathology , Mitochondrial Dynamics , Mitophagy , Neoplasms/pathology , Neurodegenerative Diseases/pathology , Animals , Biomarkers/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cell Line , Energy Metabolism , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transfection
13.
EMBO J ; 40(10): e103563, 2021 05 17.
Article En | MEDLINE | ID: mdl-33932238

The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.


Autophagosomes/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Proteins/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Blotting, Western , Fluorescent Antibody Technique , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/genetics , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/genetics , Proteins/genetics , RNA Interference
14.
Cell Rep ; 35(2): 108983, 2021 04 13.
Article En | MEDLINE | ID: mdl-33852870

Preclinical models of ischemia/reperfusion injury (RI) demonstrate the deleterious effects of permeability transition pore complex (PTPC) opening in the first minutes upon revascularization of the occluded vessel. The ATP synthase c subunit (Csub) influences PTPC activity in cells, thus impacting tissue injury. A conserved glycine-rich domain in Csub is classified as critical because, when mutated, it modifies ATP synthase properties, protein interaction with the mitochondrial calcium (Ca2+) uniporter complex, and the conductance of the PTPC. Here, we document the role of a naturally occurring mutation in the Csub-encoding ATP5G1 gene at the G87 position found in two ST-segment elevation myocardial infarction (STEMI) patients and how PTPC opening is related to RI in patients affected by the same disease. We report a link between the expression of ATP5G1G87E and the response to hypoxia/reoxygenation of human cardiomyocytes, which worsen when compared to those expressing the wild-type protein, and a positive correlation between PTPC and RI.


Hypoxia/genetics , Mitochondria/genetics , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Myocytes, Cardiac/metabolism , ST Elevation Myocardial Infarction/genetics , Aged , Animals , Base Sequence , Calcium Channels/genetics , Calcium Channels/metabolism , Exons , Female , Gene Expression , Humans , Hypoxia/metabolism , Hypoxia/pathology , Introns , Male , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proton-Translocating ATPases/deficiency , Mutation , Myocytes, Cardiac/pathology , Oxygen/adverse effects , Prospective Studies , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/pathology
15.
Cancers (Basel) ; 13(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921106

Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.

16.
EMBO J ; 40(9): e104888, 2021 05 03.
Article En | MEDLINE | ID: mdl-33630350

Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.


Endoplasmic Reticulum/metabolism , Gene Deletion , Lymphopenia/genetics , Lymphoproliferative Disorders/genetics , Nuclear Proteins/genetics , Vesicular Transport Proteins/genetics , Animals , B-Lymphocytes/metabolism , Calcium Signaling , Disease Models, Animal , Female , HEK293 Cells , Humans , Lymphopenia/metabolism , Lymphoproliferative Disorders/metabolism , Male , Mice , NIH 3T3 Cells , Nuclear Proteins/metabolism , Vesicular Transport Proteins/metabolism
17.
Function (Oxf) ; 2(2): zqab005, 2021.
Article En | MEDLINE | ID: mdl-35330818

Basal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, Adenosine 5'-triphosphate (ATP) synthesis, and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia, and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack (1) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, (2) modifies expression pattern of oxidative phosphorylation enzymes, and (3) severely affects cardiac performance. Hearts from P2rx7-deleted versus wild-type mice are larger, heart mitochondria smaller, and stroke volume, ejection fraction, fractional shortening, and cardiac output, are significantly decreased. Accordingly, the physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.


Adenosine Triphosphate , Receptors, Purinergic P2X7 , Animals , Humans , Mice , Energy Metabolism , HEK293 Cells , Physical Functional Performance , Receptors, Purinergic P2X7/genetics
18.
Nat Commun ; 11(1): 6069, 2020 11 27.
Article En | MEDLINE | ID: mdl-33247103

Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.


Genes, Reporter , Green Fluorescent Proteins/metabolism , Organelles/metabolism , Animals , Calcium/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Neurons/metabolism , Rats, Sprague-Dawley , Zebrafish/metabolism
19.
Diagnostics (Basel) ; 10(10)2020 Oct 17.
Article En | MEDLINE | ID: mdl-33080806

Abnormal levels of pyruvate and lactate were reported in multiple sclerosis (MS). We studied the response of markers of mitochondrial function to rehabilitation in relation to type, intensity and endurance performance in severely disabled MS patients. Forty-six progressive MS patients were randomized to receive 12 walking sessions of robot-assisted gait training (RAGT, n = 23) or conventional overground therapy (CT, n = 23). Ten healthy subjects were also studied. Blood samples were collected to determine lactate, pyruvate, and glutathione levels and lactate/pyruvate ratio pre-post rehabilitation. In vivo muscle metabolism and endurance walking capacity were assessed by resting muscle oxygen consumption (rmVO2) using near-infrared spectroscopy and by six-minute walking distance (6MWD), respectively. The levels of mitochondrial biomarkers and rmVO2, altered at baseline with respect to healthy subjects, improved after rehabilitation in the whole population. In the two groups, an enhanced response was observed after RAGT compared to CT for lactate (p = 0.012), glutathione (<0.001), lactate/pyruvate ratio (p = 0.08) and rmVO2 (p = 0.07). Metabolic biomarkers and 6MWD improvements were exclusively correlated with a training speed markedly below individual gait speed. In severely disabled MS patients, rehabilitation rebalanced altered serum metabolic and muscle parameters, with RAGT being more effective than CT. A determinable slow training speed was associated with better metabolic and functional recovery. Trial Registration: ClinicalTrials.gov NCT02421731.

20.
Biomolecules ; 10(7)2020 07 04.
Article En | MEDLINE | ID: mdl-32635556

Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.


Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Reactive Oxygen Species/metabolism , Cell Death , Humans , Membrane Potential, Mitochondrial , Signal Transduction
...