Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Sci Total Environ ; 934: 173242, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38763188

Estuarine ecosystems face increasing anthropogenic pressures, necessitating effective monitoring methods to mitigate their impacts on the biodiversity they harbour. The use of environmental DNA (eDNA) based detection methods is increasingly recognized as a promising tool to complement other, potentially invasive monitoring techniques. Integrating such eDNA analyses into monitoring frameworks for large ecosystems is still challenging and requires a deeper understanding of the scale and resolution at which eDNA patterns may offer insights in species presence and community composition space and time. The Scheldt estuary, characterized by its diverse habitats and complex currents, is one of the largest Western European tidal river systems. Until now, it remains challenging to obtain accurate information on fish communities living in and migrating through this ecosystem, consequently confining our knowledge to specific locations. To explore the potential of eDNA based monitoring, we simultaneously combine stow net fishing with eDNA metabarcoding, to assess spatiotemporal shifts in the Scheldt estuary's fish communities. In total, we detected 71 fish species in the estuary using eDNA metabarcoding, partly overlapping with historic fish community data gathered at the different study locations and in contrast to only 42 species using stow net fishing during the same survey period. Community compositions found by both detection methods varied among sampling locations, driven by a clear correlation to the salinity gradient. Limited effects of sampling depth and tide were observed on the eDNA metabarcoding data, allowing a significant reduction of the eDNA sampling effort for future eDNA fish monitoring campaigns in this study system. Our results further demonstrate that seasonal shifts in fish species occurrence can be detected using eDNA metabarcoding. Combining eDNA metabarcoding and stow net fishing further enhances our understanding of this vital waterway's diverse fish populations, allowing a higher resolution and more efficient monitoring strategy.


DNA Barcoding, Taxonomic , DNA, Environmental , Environmental Monitoring , Estuaries , Fishes , Animals , Fishes/genetics , DNA, Environmental/analysis , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Biodiversity , Ecosystem , Rivers
2.
Proc Natl Acad Sci U S A ; 121(21): e2400018121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38748576

Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.


Gene Flow , Hybridization, Genetic , Models, Genetic , Polyploidy , Evolution, Molecular , Diploidy , Alleles
3.
Commun Biol ; 7(1): 645, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802499

Throughout succession, communities undergo structural shifts, which can alter the relative abundances of species and how they interact. It is frequently asserted that these alterations beget stability, i.e. that succession selects for communities better able to resist perturbations. Yet, whether and how alterations of network structure affect stability during succession in complex communities is rarely studied in natural ecosystems. Here, we explore how network attributes influence stability of different successional stages of a natural network: symbiotic arthropod communities forming food webs inside red wood ant nests. We determined the abundance of 16 functional groups within the symbiont community across 51 host nests in the beginning and end stages of succession. Nest age was the main driver of the compositional shifts: symbiont communities in old nests contained more even species abundance distributions and a greater proportion of specialists. Based on the abundance data, we reconstructed interaction matrices and food webs of the symbiont community for each nest. We showed that the enhanced community evenness in old nests leads to an augmented food web stability in all but the largest symbiont communities. Overall, this study demonstrates that succession begets stability in a natural ecological network by making the community more even.


Ants , Food Chain , Symbiosis , Animals , Ants/microbiology , Ants/physiology , Ecosystem , Nesting Behavior
4.
Proc Natl Acad Sci U S A ; 120(41): e2307289120, 2023 10 10.
Article En | MEDLINE | ID: mdl-37788315

The importance of whole-genome duplication (WGD) for evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary dead end, there is growing evidence that polyploidization can help overcome environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete or outlive nonpolyploids at times of environmental upheaval remain elusive, especially for autopolyploids, in which heterosis effects are limited. On the longer term, WGD might increase both mutational and environmental robustness due to redundancy and increased genetic variation, but on the short-or even immediate-term, selective advantages of WGDs are harder to explain. Here, by duplicating artificially generated Gene Regulatory Networks (GRNs), we show that duplicated GRNs-and thus duplicated genomes-show higher signal output variation than nonduplicated GRNs. This increased variation leads to niche expansion and can provide polyploid populations with substantial advantages to survive environmental turmoil. In contrast, under stable environments, GRNs might be maladaptive to changes, a phenomenon that is exacerbated in duplicated GRNs. We believe that these results provide insights into how genome duplication and (auto)polyploidy might help organisms to adapt quickly to novel conditions and to survive ecological uproar or even cataclysmic events.


Gene Duplication , Gene Regulatory Networks , Humans , Genome , Polyploidy , Evolution, Molecular , Genome, Plant/genetics
5.
Heredity (Edinb) ; 131(3): 221-229, 2023 09.
Article En | MEDLINE | ID: mdl-37443389

Maternally transmitted symbionts such as Wolbachia can alter sex allocation in haplodiploid arthropods. By biasing population sex ratios towards females, these changes in sex allocation may facilitate the spread of symbionts. In contrast to symbiont-induced cytoplasmic incompatibility (CI), the mechanisms that underpin sex allocation distortion remain poorly understood. Using a nuclear genotype reference panel of the haplodiploid mite Tetranychus urticae and a single Wolbachia variant that is able to simultaneously induce sex allocation distortion and CI, we unraveled the mechanistic basis of Wolbachia-mediated sex allocation distortion. Host genotype was an important determinant for the strength of sex allocation distortion. We further show that sex allocation distortion by Wolbachia in haplodiploid mites is driven by increasing egg size, hereby promoting egg fertilization. This change in reproductive physiology was also coupled to increased male and female adult size. Our results echo previous work on Cardinium symbionts, suggesting that sex allocation distortion by regulating host investment in egg size is a common strategy among symbionts that infect haplodiploids. To better understand the relevance that sex allocation distortion may have for the spread of Wolbachia in natural haplodiploid populations, we parametrized a model based on generated phenotypic data. Our simulations show that empirically derived levels of sex allocation distortion can be sufficient to remove invasion thresholds, allowing CI to drive the spread of Wolbachia independently of the initial infection frequency. Our findings help elucidate the mechanisms that underlie the widespread occurrence of symbionts in haplodiploid arthropods and the evolution of sex allocation.


Tetranychidae , Wolbachia , Animals , Male , Female , Reproduction/physiology , Penetrance , Tetranychidae/genetics , Bacteroidetes , Cytoplasm , Wolbachia/genetics , Symbiosis/genetics , Sex Ratio
6.
J Anim Ecol ; 92(6): 1113-1123, 2023 06.
Article En | MEDLINE | ID: mdl-37087688

Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade-offs, and testing the repeatability of evolutionary outcomes. Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short-lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco-evolutionary consequences of dispersal. We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes.


Biological Evolution , Life History Traits , Animals , Population Dynamics , Ecosystem
7.
Environ Res ; 228: 115857, 2023 07 01.
Article En | MEDLINE | ID: mdl-37059322

Monitoring fish communities is central to the evaluation of ecological health of rivers. Both presence/absence of fish species and their relative quantity in local fish assemblages are crucial parameters to measure. Fish communities in lotic systems are traditionally monitored via electrofishing, characterized by a known limited efficiency and high survey costs. Analysis of environmental DNA could serve as a non-destructive alternative for detection and quantification of lotic fish communities, but this approach still requires further insights in practical sampling schemes incorporating transport and dilution of the eDNA particles; optimization of predictive power and quality assurance of the molecular detection method. Via a controlled cage experiment, we aim to extend the knowledge on streamreach of eDNA in small rivers and large brooks, as laid out in the European Water Framework Directive's water typology. Using a high and low source biomass in two river transects of a species-poor river characterized by contrasting river discharge rates, we found strong and significant correlations between the eDNA relative species abundances and the relative biomass per species in the cage community. Despite a decreasing correlation over distance, the underlying community composition remained stable from 25 to 300 m, or up to 1 km downstream of the eDNA source, depending on the river discharge rate. Such decrease in similarity between relative source biomass and the corresponding eDNA-based community profile with increasing distance downstream from the source, might be attributed to variation in species-specific eDNA persistence. Our findings offer crucial insights on eDNA behaviour and characterization of riverine fish communities. We conclude that water sampled from a relatively small river offers an adequate eDNA snapshot of the total fish community in the 300-1000 m upstream transect. The potential application for other river systems is further discussed.


DNA, Environmental , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Fishes/genetics , Water , Ecosystem
8.
Proc Biol Sci ; 290(1995): 20222456, 2023 03 29.
Article En | MEDLINE | ID: mdl-36946113

Polyploidy, i.e. the occurrence of multiple sets of chromosomes, is regarded as an important phenomenon in plant ecology and evolution, with all flowering plants likely having a polyploid ancestry. Owing to genome shock, minority cytotype exclusion and reduced fertility, polyploids emerging in diploid populations are expected to face significant challenges to successful establishment. Their establishment and persistence are often explained by possible fitness or niche differences that would relieve the competitive pressure with diploid progenitors. Experimental evidence for such advantages is, however, not unambiguous, and considerable niche overlap exists among most polyploid species and their diploid counterparts. Here, we develop a neutral spatially explicit eco-evolutionary model to understand whether neutral processes can explain the eco-evolutionary patterns of polyploids. We present a general mechanism for polyploid establishment by showing that sexually reproducing organisms assemble in space in an iterative manner, reducing frequency-dependent mating disadvantages and overcoming potential reduced fertility issues. Moreover, we construct a mechanistic theoretical framework that allows us to understand the long-term evolution of mixed-ploidy populations and show that our model is remarkably consistent with recent phylogenomic estimates of species extinctions in the Brassicaceae family.


Diploidy , Ploidies , Humans , Polyploidy , Chromosomes , Reproduction
9.
J Anim Ecol ; 92(4): 913-924, 2023 04.
Article En | MEDLINE | ID: mdl-36807906

Trophic interactions are often deduced from body size differences, assuming that predators prefer prey smaller than themselves because larger prey are more difficult to subdue. This has mainly been confirmed in aquatic ecosystems, but rarely in terrestrial ecosystems, especially in arthropods. Our goal was to validate whether body size ratios can predict trophic interactions in a terrestrial, plant-associated arthropod community and whether predator hunting strategy and prey taxonomy could explain additional variation. We conducted feeding trials with arthropods from marram grass in coastal dunes to test whether two individuals, of the same or different species, would predate each other. From the trial results, we constructed one of the most complete, empirically derived food webs for terrestrial arthropods associated with a single plant species. We contrasted this empirical food web with a theoretical web based on body size ratios, activity period, microhabitat, and expert knowledge. In our feeding trials, predator-prey interactions were indeed largely size-based. Moreover, the theoretical and empirically based food webs converged well for both predator and prey species. However, predator hunting strategy, and especially prey taxonomy improved predictions of predation. Well-defended taxa, such as hard-bodied beetles, were less frequently consumed than expected based on their body size. For instance, a beetle of average size (measuring 4 mm) is 38% less vulnerable than another average arthropod with the same length. Body size ratios predict trophic interactions among plant-associated arthropods fairly well. However, traits such as hunting strategy and anti-predator defences can explain why certain trophic interactions do not adhere to size-based rules. Feeding trials can generate insights into multiple traits underlying real-life trophic interactions among arthropods.


Arthropods , Coleoptera , Animals , Food Chain , Ecosystem , Body Size , Predatory Behavior
10.
Ecology ; 104(3): e3946, 2023 03.
Article En | MEDLINE | ID: mdl-36479697

Changes in the species richness of (meta-)communities emerge from changes in the relative species abundance distribution (SAD), the total density of individuals, and the amount of spatial aggregation of individuals from the same species. Yet, how human disturbance affects these underlying diversity components at different spatial scales and how this interacts with important species traits, like dispersal capacity, remain poorly understood. Using data of carabid beetle communities along a highly replicated urbanization gradient, we reveal that species richness in urban sites was reduced due to a decline in individual density as well as changes in the SAD at both small and large spatial scales. Changes in these components of species richness were linked to differential responses of groups of species that differ in dispersal capacity. The individual density effect on species richness was due to a drastic 90% reduction of low-dispersal individuals in more urban sites. Conversely, the decrease in species richness due to changes in the SAD at large (i.e., loss of species from the regional pool) and small (i.e., decreased evenness) spatial scales were driven by species with intermediate and high dispersal ability, respectively. These patterns coincide with the expected responses of these dispersal-type assemblages toward human disturbance, namely, (i) loss of low-dispersal species by local extinction processes, (ii) loss of higher-dispersal species from the regional species pool due to decreased habitat diversity, and (iii) dominance of a few highly dispersive species resulting in a decreased evenness. Our results demonstrate that dispersal capacity plays an essential role in determining scale-dependent changes in species richness patterns. Incorporating this information improves our mechanistic insight into how environmental change affects species diversity at different spatial scales, allowing us to better forecast how human disturbance will drive local and regional changes in biodiversity patterns.


Coleoptera , Ecosystem , Humans , Animals , Biodiversity , Urbanization
11.
Ecol Lett ; 25(12): 2675-2687, 2022 Dec.
Article En | MEDLINE | ID: mdl-36223413

Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.


Biological Evolution , Ecosystem , Animals , Syndrome , Phenotype
12.
Evol Lett ; 6(3): 255-265, 2022 Jun.
Article En | MEDLINE | ID: mdl-35784453

Reproductive parasites such as Wolbachia spread within host populations by inducing cytoplasmic incompatibility (CI). CI occurs when parasite-modified sperm fertilizes uninfected eggs and is typified by great variation in strength across biological systems. In haplodiploid hosts, CI has different phenotypic outcomes depending on whether the fertilized eggs die or develop into males. Genetic conflict theories predict the evolution of host modulation of CI, which in turn influences the stability of reproductive parasitism. However, despite the ubiquity of CI-inducing parasites in nature, there is scarce evidence for intraspecific host modulation of CI strength and phenotype. Here, we tested for intraspecific host modulation of Wolbachia-induced CI in haplodiploid Tetranychus urticae mites. Using a single CI-inducing Wolbachia variant and mitochondrion, a nuclear panel was created that consisted of infected and cured near-isogenic lines. We performed a highly replicated age-synchronized full diallel cross composed of incompatible and compatible control crosses. We uncovered host modifier systems that cause striking variation in CI strength when carried by infected T. urticae males. We observed a continuum of CI phenotypes in our crosses and identified strong intraspecific female modulation of the CI phenotype. Crosses established a recessive genetic basis for the maternal effect and were consistent with polygenic Mendelian inheritance. Both male and female modulation interacted with the genotype of the mating partner. Our findings identify spermatogenesis as an important target of selection for host modulation of CI strength and underscore the importance of maternal genetic effects for the CI phenotype. Our findings reveal that intraspecific host modulation of CI is underpinned by complex genetic architectures and confirm that the evolution of reproductive parasitism is contingent on host genetics.

13.
Front Microbiol ; 13: 703183, 2022.
Article En | MEDLINE | ID: mdl-35865927

Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host's fitness. In turn, the microbiome may be influenced by the host and by the host's environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites' performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species' performance on multiple resources.

14.
Evol Appl ; 15(5): 865-877, 2022 May.
Article En | MEDLINE | ID: mdl-35603025

Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural-urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second-generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.

15.
Front Plant Sci ; 13: 808427, 2022.
Article En | MEDLINE | ID: mdl-35548276

Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.

16.
Am Nat ; 199(6): 729-742, 2022 06.
Article En | MEDLINE | ID: mdl-35580223

AbstractThe process of adaptation toward novel environments is directly connected to the acquisition of higher fitness relative to others. Such increased fitness is obtained by changes in life history traits that may directly impact population dynamics. From a functional perspective, increased fitness can be achieved through higher resource use or more efficient resource use, each potentially having its own impact on population dynamics. In the first case, adaptation is expected to directly translate into higher population growth. In the second case, adaptation requires less energy and hence may lead to higher carrying capacity. Adaptation may thus lead to changes in ecological dynamics and vice versa. Here, by using a combination of evolutionary experiments with spider mites and a population dynamic model, we investigate how an increase in fecundity (a validated proxy for adaptation) affects a population's ecological dynamics. Our results show that adaptation can positively affect population growth rate and either positively or negatively affect carrying capacity, depending on the ecological condition leading to variation in adaptation. These findings show the importance of evolution for population dynamics in changing environments, which may ultimately affect the stability and resilience of populations.


Biological Evolution , Tetranychidae , Acclimatization , Adaptation, Physiological , Animals , Population Dynamics
17.
Oecologia ; 199(2): 355-366, 2022 Jun.
Article En | MEDLINE | ID: mdl-35597849

The balance between costs and benefits is expected to drive associations between species. While these balances are well understood for strict associations, we have no insights to which extent they determine facultative associations between species. Here, we quantified the costs of living in a facultative association, by studying the effects of red wood ants on the facultatively associated isopod Porcellio scaber. Porcellio scaber frequently occurred in and near hostile red wood ant nests and might outnumber obligate nest associates. The facultative association involved different costs for the isopod. We found that the density of the isopod decreases near the nest with higher ant traffic. Individuals in and near the nest were smaller than individuals further away from the nest. Smaller individuals were also found at sites with higher ant traffic. A higher proportion of wounded individuals was found closer to the nest and with higher ant traffic. We recorded pregnant females and juveniles in the nest suggesting that the life cycle can be completed inside the nests. Lab experiments showed that females died sooner and invested less in reproduction in presence of red wood ants. Porcellio scaber rarely provoked an aggression response, but large numbers were carried as prey to the nest. These preyed isopods were mainly dried out corpses. Our results showed that the ant association incurred several costs for a facultative associate. Consequently, red wood ant nests and their surrounding territory act as an alternative habitat where demographic costs are offset by a stable resource provisioning and protection.


Ants , Isopoda , Animals , Ants/physiology , Ecosystem , Humans , Reproduction , Symbiosis
18.
Front Microbiol ; 13: 790189, 2022.
Article En | MEDLINE | ID: mdl-35356520

Despite the microbiome's key role in health and fitness, little is known about the environmental factors shaping the gut microbiome of wild birds. With habitat fragmentation being recognised as a major threat to biological diversity, we here determined how forest structure influences the bacterial species richness and diversity of wild great tit nestlings (Parus major). Using an Illumina metabarcoding approach which amplifies the 16S bacterial ribosomal RNA gene, we measured gut microbiota diversity and composition from 49 great tit nestlings, originating from 23 different nests that were located in 22 different study plots across a gradient of forest fragmentation and tree species diversity. Per nest, an average microbiome was determined on which the influence of tree species (composition and richness) and forest fragmentation (fragment area and edge density) was examined and whether this was linked to host characteristics (body condition and fledging success). We found an interaction effect of edge density with tree species richness or composition on both the microbial richness (alpha diversity: Chao1 and Shannon) and community structure (beta diversity: weighted and unweighted UniFrac). No significant short-term impact was observed of the overall faecal microbiome on host characteristics, but rather an adverse effect of specific bacterial genera on fledging success. These results highlight the influence of environmental factors on the microbial richness as well as the phylogenetic diversity during a life stage where the birds' microbiota is shaped, which could lead to long-term consequences for host fitness.

19.
Science ; 375(6586): 1275-1281, 2022 03 18.
Article En | MEDLINE | ID: mdl-35298255

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.


Adaptation, Physiological , Biological Evolution , Ecosystem , Trifolium/physiology , Urbanization , Cities , Genes, Plant , Genome, Plant , Hydrogen Cyanide/metabolism , Rural Population , Trifolium/genetics
20.
Am Nat ; 199(1): E15-E27, 2022 01.
Article En | MEDLINE | ID: mdl-34978963

AbstractNesting in dense aggregations is common in central place foragers, such as group-living birds and insects. Both environmental heterogeneity and behavioral interactions are known to induce clustering of nests, but their relative importance remains unclear. We developed an individual-based model that simulated the spatial organization of nest building in a gregarious digger wasp, Bembix rostrata. This process-based model integrates environmental suitability, as derived from a microhabitat model, and relevant behavioral mechanisms related to local site fidelity and conspecific attraction. The drivers behind the nesting were determined by means of inverse modeling in which the emerging spatial and network patterns from simulations were compared with those observed in the field. Models with individual differences in behavior that include the simultaneous effect of a weak environmental cue and strong behavioral mechanisms yielded the best fit to the field data. The nest pattern formation of a central place foraging insect cannot be considered as the sum of environmental and behavioral mechanisms. We demonstrate the use of inverse modeling to understand complex processes that underlie nest aggregation in nature.


Nesting Behavior , Wasps , Animals , Birds
...