Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 681, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182676

RESUMEN

Lithium has been the frontline treatment for bipolar disorder for over 60 years. However, its mode of action and distribution in the brain is still incompletely understood. The primary isotope of lithium, lithium-7 (7Li), is a magnetic resonance (MR) active, spin-3/2 nucleus. However, its low MR sensitivity and the small brain size of mice make 7Li MR imaging (MRI) difficult in preclinical research. We tested four MRI sequences (FLASH, RARE, bSSFP, and SPIRAL) on lithium-containing phantoms, and bSSFP and SPIRAL on orally lithium-treated adult C57BL/6 mice. 7Li MR spectroscopy was acquired weekly at 9.4T to monitor the lithium uptake. The in vivo T1 relaxation time of 7Li was estimated in four mice. 4-h SPIRAL 7Li MRI was acquired in ten mice at a resolution of 2 × 2 × 3 mm3. SPIRAL MRI provided the highest signal-to-noise ratio (SNR) per unit acquisition time and the best image quality. We observed a non-homogeneous distribution of lithium in the mouse brain, with the highest concentrations in the cortex, ventricles, and basal brain regions. Almost no lithium signal was detected in the olfactory bulb and the cerebellum. We showed that in vivo 7Li MRI in mice is feasible, although with limited spatial resolution and SNR.


Asunto(s)
Litio , Imagen por Resonancia Magnética , Animales , Ratones , Ratones Endogámicos C57BL , Estudios de Factibilidad , Compuestos de Litio
2.
Magn Reson Med ; 91(4): 1449-1463, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044790

RESUMEN

PURPOSE: Time-lapse MRI enables tracking of single iron-labeled cells. Yet, due to temporal blurring, only slowly moving cells can be resolved. To study faster cells for example during inflammatory processes, accelerated acquisition is needed. METHODS: A rotating phantom system was developed to quantitatively measure the current maximum detectable speed of cells in time-lapse MRI. For accelerated cell tracking, an interleaved radial acquisition scheme was applied to phantom and murine brain in vivo time-lapse MRI experiments at 9.4 T. Detection of iron-labeled cells was evaluated in fully sampled and undersampled reconstructions with and without compressed sensing. RESULTS: The rotating phantom system enabled ultra-slow rotation of phantoms and a velocity detection limit of full-brain Cartesian time-lapse MRI of up to 172 µm/min was determined. Both phantom and in vivo measurements showed that single cells can be followed dynamically using radial time-lapse MRI. Higher temporal resolution of undersampled reconstructions reduced geometric distortion, the velocity detection limit was increased to 1.1 mm/min in vitro, and previously hidden fast-moving cells were recovered. In the mouse brain after in vivo labeling, a total of 42 ± 4 cells were counted in fully sampled, but only 7 ± 1 in undersampled images due to streaking artifacts. Using compressed sensing 33 ± 4 cells were detected. CONCLUSION: Interleaved radial time-lapse MRI permits retrospective reconstruction of both fully sampled and accelerated images, enables single cell tracking at higher temporal resolution and recovers cells hidden before due to blurring. The velocity detection limit as determined with the rotating phantom system increased two- to three-fold compared to previous results.


Asunto(s)
Rastreo Celular , Imagen por Resonancia Magnética , Animales , Ratones , Estudios Retrospectivos , Límite de Detección , Imagen de Lapso de Tiempo , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Hierro , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Biology (Basel) ; 12(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627007

RESUMEN

Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.

4.
Vet Sci ; 10(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36977221

RESUMEN

Osteoarthritis is a chronic disease that often affects the canine stifle joint. Due to their biomechanical function, the menisci in the canine stifle play an important role in osteoarthritis. They compensate for the incongruence in the joint and distribute and minimize compressive loads, protecting the hyaline articular cartilage from damage. Meniscal degeneration favors the development and progression of stifle joint osteoarthritis. Qualitative magnetic resonance imaging (MRI) is the current golden standard for detecting meniscal changes, but it has limitations in detecting early signs of meniscal degeneration. A quantitative MRI offers new options for detecting early structural changes. T2 mapping can especially visualize structural changes such as altered collagen structures and water content, as well as deviations in proteoglycan content. This study evaluated T2 mapping and performed a histological scoring of menisci in elderly dogs that had no or only low radiographic osteoarthritis grades. A total of 16 stifles from 8 older dogs of different sex and breed underwent ex vivo magnet resonance imaging, including a T2 mapping pulse sequence with multiple echoes. A histological analysis of corresponding menisci was performed using a modified scoring system. The mean T2 relaxation time was 18.2 ms and the mean histological score was 4.25. Descriptive statistics did not reveal a correlation between T2 relaxation time and histological score. Ex vivo T2 mapping of canine menisci did not demonstrate histological changes, suggesting that early meniscal degeneration can be present in the absence of radiological signs of osteoarthritis, including no significant changes in T2 relaxation time.

5.
Eur Surg Res ; 64(1): 37-53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34915502

RESUMEN

Understanding the impact routine research and laboratory procedures have on animals is crucial to improving their well-being and to the success and reproducibility of the research they are involved in. Cognitive measures of welfare offer insight into animals' internal psychological state, but require validation. Attention bias - the tendency to attend to one type of information over another - is a cognitive phenomenon documented in humans and animals that is known to be modulated by affective state (i.e., emotions). Hence, changes in attention bias may offer researchers a deeper perspective of their animals' psychological well-being. The dot-probe task is an established method for quantifying attention bias in humans (by measuring reaction time to a dot-probe replacing pairs of stimuli), but has yet to be validated in animals. We developed a dot-probe task for long-tailed macaques (Macaca fascicularis) to determine if the task can detect changes in attention bias following anesthesia, a context known to modulate attention and trigger physiological arousal in macaques. Our task included the following features: stimulus pairs of threatening and neutral facial expressions of conspecifics and their scrambled counterparts, two stimuli durations (100 and 1,000 ms), and counterbalancing of the dot-probe's position on the touchscreen (left and right) and location relative to the threatening stimulus. We tested 8 group-housed adult females on different days relative to being anesthetized (baseline and 1-, 3-, 7-, and 14-days after). At baseline, monkeys were vigilant to threatening content when stimulus pairs were presented for 100 ms, but not 1,000 ms. On the day immediately following anesthesia, we found evidence that attention bias changed to an avoidance of threatening content. Attention bias returned to threat vigilance by the third day postanesthesia and remained so up to the last day of testing (14-days after anesthesia). We also found that attention bias was independent of the type of stimuli pair (i.e., whole face vs. scrambled counterparts), suggesting that the scrambled stimuli retained aspects of the original stimuli. Nevertheless, whole faces were more salient to the monkeys as responses to these trials were generally slower than to scrambled stimulus pairs. Overall, our study suggests it is feasible to detect changes in attention bias following anesthesia using the dot-probe task in nonhuman primates. Our results also reveal important aspects of stimulus preparation and experimental design.


Asunto(s)
Anestesia , Bienestar Psicológico , Animales , Adulto , Humanos , Femenino , Macaca fascicularis , Reproducibilidad de los Resultados , Emociones/fisiología
6.
Neuroimage ; 264: 119730, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332851

RESUMEN

Recent progress in quantitative susceptibility mapping (QSM) has enabled the accurate delineation of submillimeter-scale subcortical brain structures in humans. However, the simultaneous visualization of cortical, subcortical, and white matter structure remains challenging, utilizing QSM data solely. Here we present TQ-SILiCON, a fusion method that enhances the contrast of cortex and subcortical structures and provides an excellent white matter delineation by combining QSM and conventional T1-weighted (T1w) images. In this study, we first applied QSM in the macaque monkey to map iron-rich subcortical structures. Implementing the same QSM acquisition and analysis methods allowed a similar accurate delineation of subcortical structures in humans. However, the QSM contrast of white and cortical gray matter was not sufficient for appropriate segmentation. Applying automatic brain tissue segmentation to TQ-SILiCON images of the macaque improved the classification of subcortical brain structures as compared to the single T1 contrast by maintaining an excellent white to cortical gray matter contrast. Furthermore, we validated our dual-contrast fusion approach in humans and similarly demonstrated improvements in automated segmentation of the cortex and subcortical structures. We believe the proposed contrast will facilitate translational studies in nonhuman primates to investigate the pathophysiology of neurodegenerative diseases that affect subcortical structures such as the basal ganglia in humans.


Asunto(s)
Mapeo Encefálico , Sustancia Blanca , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
7.
Elife ; 112022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35607889

RESUMEN

During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded-predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.


The development of anesthesia was a significant advance in medicine. It allows individuals to undergo surgery without feeling pain or remembering the experience. But scientists still do not know how anesthesia works. During anesthesia, scientists have measured brain activity using electroencephalograms (EEG) and found that the brain appears to turn on and off. Comatose patients also have similar switches between bursts of electrical activity and periods of silence. This burst-suppression pattern may be related to unconsciousness. But scientists still have many questions about how anesthesia causes burst-suppression. One challenge is that while an EEG can tell scientists when the brain turns on and off, it does not show exactly where this occurs. Another imaging method called functional Magnetic Resonance Imaging (fMRI) may fill this gap by allowing scientists to map where the brain activity occurs. Sirmpilatze et al. have created detailed maps of burst-suppression in humans, primates, and rats under anesthesia by analyzing brain scans using fMRI. In rats, the entire outer layer or cortex of the brain underwent a synchronized pattern of burst-suppression. In humans and primates, areas of the brain like those responsible for eyesight did not follow the rest of the cortex in switching on and off. The experiments reveal crucial differences in how rats and humans and other primates respond to anesthesia. The fMRI mapping technique Sirmpilatze et al. created may help scientists learn more about these differences and why some parts of human brains do not undergo burst-suppression. This may help scientists learn more about unconsciousness and help improve anesthesia or the care of comatose patients.


Asunto(s)
Anestesia , Roedores , Animales , Mapeo Encefálico , Callithrix , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Ratas
8.
Elife ; 112022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35274615

RESUMEN

Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here, we find that expression of the tetraspan-transmembrane protein CMTM5 (chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and central nervous system (CNS) myelin. Genetic disruption of the Cmtm5 gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5 deficiency causes an early-onset progressive axonopathy, which we also observe in global and tamoxifen-induced oligodendroglial Cmtm5 mutants. Presence of the WldS mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Animales , Axones/fisiología , Sistema Nervioso Central/metabolismo , Ratones , Proteínas de la Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
9.
Curr Pharm Des ; 28(4): 313-323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32679012

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), which ranks forth on the cancer-related death statistics still is both a diagnostic and a therapeutic challenge. Adenocarcinoma of the exocrine human pancreas originates in most instances from malignant transformation of ductal epithelial cells, alternatively by Acinar-Ductal Metaplasia (ADM). RA-96 antibody targets to a mucin M1, according to the more recent nomenclature MUC5AC, an extracellular matrix component excreted by PDAC cells. In this study, we tested the usability of multimodal nanoparticle carrying covalently coupled RA-96 Fab fragments for pancreatic tumor imaging. METHODS: In order to make and evaluate a novel, better targeting, theranostic nanoparticle, iron nanoparticles and the optical dye indocyanin green (ICG) were encapsulated into the cationic sphingomyelin (SM) consisting liposomes. RA-96 Fab fragment was conjugated to the liposomal surface of the nanoparticle to increase tumor homing ability. ICG and iron nanoparticle-encapsulated liposomes were studied in vitro with cells and (i) their visibility in magnetic resonance imaging (MRI), (ii) optical, (iii) Magnetic particle spectroscopy (MPS) and (iv) photoacoustic settings was tested in vitro and also in in vivo models. The targeting ability and MRI and photoacoustic visibility of the RA-96-nanoparticles were first tested in vitro cell models where cell binding and internalization were studied. In in vivo experiments liposomal nanoparticles were injected into the tail vain using an orthotopic pancreatic tumor xenograft model and subcutaneous pancreatic cancer cell xenografts bearing mice to determine in vivo targeting abilities of RA-96-conjugated liposomes Results: Multimodal liposomes could be detected by MRI, MPS and by photoacoustic imaging in addition to optical imaging showing a wide range of imaging utility. The fluorescent imaging of ICG in pancreatic tumor cells Panc89 and Capan-2 revealed an increased association of ICG-encapsulated liposomes carrying RA-96 Fab fragments in vitro compared to the control liposomes without covalently linked RA-96. Fluorescent molecular tomography (FMT) studies showed increased accumulation of the RA96-targeted nanoparticles in the tumor area compared to non-targeted controls in vivo. Similar accumulation in the tumor sites could be seen with liposomal ferric particles in MRI. Fluorescent tumor signal was confirmed by using an intraoperative fluorescent imaging system, which showed fluorescent labeling of pancreatic tumors. CONCLUSION: These results suggest that RA-96-targeted liposomes encapsulating ICG and iron nanoparticles can be used to image pancreatic tumors with a variety of optical and magnetic imaging techniques. Additionally, they might be a suitable drug delivery tool to improve treatment of PDAC patients.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Humanos , Liposomas/química , Ratones , Modelos Animales , Nanopartículas/química , Imagen Óptica , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico
10.
Nat Commun ; 12(1): 6530, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764281

RESUMEN

Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.


Asunto(s)
Endorribonucleasas/metabolismo , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Animales , Linfocitos T CD8-positivos/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Femenino , Citometría de Flujo , Genotipo , Humanos , Inmunohistoquímica , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Masculino , Células T de Memoria/metabolismo , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Acta Neuropathol Commun ; 9(1): 121, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215338

RESUMEN

Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50-70% of unknown origin. Recognized causes amount to 20-50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCreERT2xRosa26-eGFP-DTA (= 'DTA') mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood-brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research.


Asunto(s)
Modelos Animales de Enfermedad , Encefalitis/patología , Sustancia Gris/patología , Células Piramidales/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Sci Rep ; 11(1): 10713, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021218

RESUMEN

Cardiac MRI in rhesus macaques, a species of major relevance for preclinical studies on biological therapies, requires artificial ventilation to realize breath holding. To overcome this limitation of standard cine MRI, the feasibility of Real-Time (RT) cardiac MRI has been tested in a cohort of ten adult rhesus macaques using a clinical MR-system. In spite of lower tissue contrast and sharpness of RT-MRI, cardiac functions were similarly well assessed by RT-MRI compared to cine MRI (similar intra-subject repeatability). However, systematic underestimation of the end-diastolic volume (31 ± 9%), end-systolic volume (20 ± 11%), stroke volume (40 ± 12%) and ejection fraction (13 ± 9%) hamper the comparability of RT-MRI results with those of other cardiac MRI methods. Yet, the underestimations were very consistent (< 5% variability) for repetitive measurements, making RT-MRI an appropriate alternative to cine MRI for longitudinal studies. In addition, RT-MRI enabled the analysis of cardio-respiratory coupling. All functional parameters showed lower values during expiration compared to inspiration, most likely due to the pressure-controlled artificial ventilation. In conclusion, despite systematic underestimation of the functional parameters, RT-MRI allowed the assessment of left ventricular function in macaques with significantly less experimental effort, measurement time, risk and burden for the animals compared to cine MRI.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Cinemagnética , Imagen por Resonancia Magnética , Animales , Corazón/fisiología , Pruebas de Función Cardíaca , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Cinemagnética/métodos , Investigación Biomédica Traslacional , Función Ventricular Izquierda
13.
Cereb Cortex ; 31(3): 1427-1443, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33135045

RESUMEN

The neocortex is composed of layers. Whether layers constitute an essential framework for the formation of functional circuits is not well understood. We investigated the brain-wide input connectivity of vasoactive intestinal polypeptide (VIP) expressing neurons in the reeler mouse. This mutant is characterized by a migration deficit of cortical neurons so that no layers are formed. Still, neurons retain their properties and reeler mice show little cognitive impairment. We focused on VIP neurons because they are known to receive strong long-range inputs and have a typical laminar bias toward upper layers. In reeler, these neurons are more dispersed across the cortex. We mapped the brain-wide inputs of VIP neurons in barrel cortex of wild-type and reeler mice with rabies virus tracing. Innervation by subcortical inputs was not altered in reeler, in contrast to the cortical circuitry. Numbers of long-range ipsilateral cortical inputs were reduced in reeler, while contralateral inputs were strongly increased. Reeler mice had more callosal projection neurons. Hence, the corpus callosum was larger in reeler as shown by structural imaging. We argue that, in the absence of cortical layers, circuits with subcortical structures are maintained but cortical neurons establish a different network that largely preserves cognitive functions.


Asunto(s)
Cuerpo Calloso/anatomía & histología , Neocórtex/citología , Vías Nerviosas/citología , Neuronas/citología , Animales , Mapeo Encefálico , Ratones , Ratones Mutantes Neurológicos , Péptido Intestinal Vasoactivo
14.
Acta Neuropathol Commun ; 8(1): 224, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33357244

RESUMEN

Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.


Asunto(s)
Astrocitos/fisiología , Diferenciación Celular , Mielinólisis Pontino Central/patología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/fisiología , Adulto , Anciano , Animales , Fármacos Antidiuréticos , Astrocitos/patología , Linaje de la Célula , Desamino Arginina Vasopresina , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Masculino , Persona de Mediana Edad , Vaina de Mielina , Mielinólisis Pontino Central/inducido químicamente , Mielinólisis Pontino Central/metabolismo , Proteínas de Neoplasias/metabolismo , Nestina/metabolismo , Células-Madre Neurales , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Ratas , Cloruro de Sodio
15.
Sci Rep ; 10(1): 10221, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576909

RESUMEN

The aim of this study was to establish a feasible and robust magnetic resonance imaging protocol for the quantitative assessment of cardiac function in marmosets and to present normal values of cardiac function across different ages from young adult, middle-aged, to very old clinically healthy animals. Cardiac MRI of 33 anesthetized marmosets at the age of 2-15 years was performed at 9.4 T using IntraGate-FLASH that operates without any ECG-triggering and breath holding. Normalized to post-mortem heart weight, the left ventricular end-diastolic volume (LV-EDV) was significantly reduced in older marmosets. The LV end-systolic volume (LV-ESV) and the LV stroke volume (LV-SV) showed a similar trend while the LV ejection fraction (LV-EF) and wall thickening remained unchanged. Similar observations were made for the right ventricle. Moreover, the total ventricular myocardial volume was lower in older monkeys while no significant difference in heart weight was found. In conclusion, IntraGate-FLASH allowed for quantification of left ventricular cardiac function but seems to underestimate the volumes of the right ventricle. Although less strong and without significant sex differences, the observed age related changes were similar to previously reported findings in humans supporting marmosets as a model system for age related cardiovascular human diseases.


Asunto(s)
Corazón/fisiología , Imagen por Resonancia Magnética/métodos , Volumen Sistólico , Función Ventricular Izquierda , Función Ventricular Derecha , Factores de Edad , Animales , Callithrix , Femenino , Masculino , Factores Sexuales
16.
J Control Release ; 319: 360-370, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31923534

RESUMEN

We previously reported that inorganic-organic hybrid nanoparticles (IOH-NPs) containing the synthetic glucocorticoid (GC) betamethasone show efficient anti-inflammatory activity in mice. Here, we employed IOH-NPs with the chemical composition Gd3+2[AMP]2-3 (AMP: adenosine monophosphate) to determine their in vivo distribution by magnetic resonance imaging after intraperitoneal injection. We show that IOH-NPs distribute throughout the peritoneal cavity from where they get rapidly cleared and then localize to abdominal organs. Our findings were confirmed by analyzing individual mouse organs ex vivo following injection of IOH-NPs with the chemical composition [ZrO]2+[(BMP)0.9(FMN)0.1]2- (BMP: betamethasone phosphate, FMN: flavin mononucleotide) or [ZrO]2+[(HPO4)0.9(FMN)0.1]2- using inductively coupled plasma mass spectrometry and flow cytometry. To characterize the mechanism of cellular uptake in vitro, we tested different cell lines for their ability to engulf IOH-NPs by flow cytometric analysis taking advantage of the incorporated fluorescent dye FMN. We found that IOH-NPs were efficiently taken up by macrophages, to a lesser extent by fibroblasts, epithelial cells, and myoblasts, and hardly at all by both T and B lymphocytes. Characterization of the endocytic pathway further suggested that IOH-NPs were internalized by macropinocytosis, and imaging flow cytometry revealed a strong colocalization of the engulfed IOH-NPs with the lysosomal compartment. Intracellular release of the functional anions from IOH-NPs was confirmed by the ability of the GC betamethasone to downregulate the expression of surface receptors on bone marrow-derived macrophages. Taken together, our findings unveil the mechanistic basis of an anti-inflammatory GC therapy with IOH-NPs, which may entail translational approaches in the future.


Asunto(s)
Glucocorticoides , Nanopartículas , Animales , Antiinflamatorios , Colorantes Fluorescentes , Macrófagos , Ratones
17.
Sci Rep ; 9(1): 16673, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723186

RESUMEN

Medetomidine has become a popular choice for anesthetizing rats during long-lasting sessions of blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI). Despite this, it has not yet been thoroughly established how commonly reported fMRI readouts evolve over several hours of medetomidine anesthesia and how they are affected by the precise timing, dose, and route of administration. We used four different protocols of medetomidine administration to anesthetize rats for up to six hours and repeatedly evaluated somatosensory stimulus-evoked BOLD responses and resting state functional connectivity. We found that the temporal evolution of fMRI readouts strongly depended on the method of administration. Intravenous administration of a medetomidine bolus (0.05 mg/kg), combined with a subsequent continuous infusion (0.1 mg/kg/h), led to temporally stable measures of stimulus-evoked activity and functional connectivity throughout the anesthesia. Deviating from the above protocol-by omitting the bolus, lowering the medetomidine dose, or using the subcutaneous route-compromised the stability of these measures in the initial two-hour period. We conclude that both an appropriate protocol of medetomidine administration and a suitable timing of fMRI experiments are crucial for obtaining consistent results. These factors should be considered for the design and interpretation of future rat fMRI studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Hipnóticos y Sedantes/administración & dosificación , Imagen por Resonancia Magnética/métodos , Medetomidina/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Masculino , Ratas , Ratas Wistar , Descanso/fisiología
18.
FASEB J ; 33(7): 8634-8647, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31090455

RESUMEN

Reduced expression of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) in humans and mice causes white matter inflammation and catatonic signs. These consequences are experimentally alleviated by microglia ablation via colony-stimulating factor 1 receptor (CSF1R) inhibition using PLX5622. Here we address for the first time preclinical topics crucial for translation, most importantly 1) the comparison of 2 long-term PLX5622 applications (prevention and treatment) vs. 1 treatment alone, 2) the correlation of catatonic signs and executive dysfunction, 3) the phenotype of leftover microglia evading depletion, and 4) the role of intercellular interactions for efficient CSF1R inhibition. Based on our Cnp-/- mouse model and in vitro time-lapse imaging, we report the unexpected discovery that microglia surviving under PLX5622 display a highly inflammatory phenotype including aggressive premortal phagocytosis of oligodendrocyte precursor cells. Interestingly, ablating microglia in vitro requires mixed glial cultures, whereas cultured pure microglia withstand PLX5622 application. Importantly, 2 extended rounds of CSF1R inhibition are not superior to 1 treatment regarding any readout investigated (magnetic resonance imaging and magnetic resonance spectroscopy, behavior, immunohistochemistry). Catatonia-related executive dysfunction and brain atrophy of Cnp-/- mice fail to improve under PLX5622. To conclude, even though microglia depletion is temporarily beneficial and worth pursuing, complementary treatment strategies are needed for full and lasting recovery.-Fernandez Garcia-Agudo, L., Janova, H., Sendler, L. E., Arinrad, S., Steixner, A. A., Hassouna, I., Balmuth, E., Ronnenberg, A., Schopf, N., van der Flier, F. J., Begemann, M., Martens, H., Weber, M. S., Boretius, S., Nave, K.-A., Ehrenreich, H. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Encéfalo/patología , Encefalitis/genética , Microglía/patología , Eliminación de Secuencia/genética , Adulto , Animales , Encéfalo/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Compuestos Orgánicos/farmacología , Fenotipo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Eliminación de Secuencia/efectos de los fármacos
19.
Mol Psychiatry ; 24(10): 1489-1501, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29426955

RESUMEN

Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to >20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of ApoE-/- and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like symptoms upon MK-801 challenge in ApoE-/- mice, characterized by an open blood-brain barrier, but not in their ApoE+/+ littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the hippocampus yields comparable results in ApoE-/- and ApoE+/+ mice, irrespective of immunization against NMDAR1 or ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but do not cause brain inflammation on their own.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Trastornos Mentales/inmunología , Receptores de N-Metil-D-Aspartato/inmunología , Adulto , Animales , Autoanticuerpos/inmunología , Barrera Hematoencefálica , Encéfalo/inmunología , Gatos , Perros , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Ratones , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/inmunología , Primates , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Estudios Seroepidemiológicos
20.
Magn Reson Med ; 81(2): 962-975, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30260028

RESUMEN

PURPOSE: Sensitivity to imperfections of image-encoding gradient fields may significantly impair widespread use of radial MR data acquisition. Such imperfections can cause individual echo shifts for each spoke acquired in the k-space and may produce severe image artifacts. Therefore, fast and robust methods to quantify and correct for those echo shifts are required. THEORY AND METHODS: Echo shifts can be induced by inhomogeneities of the static magnetic field (δnB ) and by imbalances of the imaging gradients (δnG ) mainly caused by eddy currents. However, mismatch between data acquisition and gradient switching may additionally play a role. From the position of the echo maxima of 2 opposing spokes, δnG and δnB can be determined and corrected by adapting the read-dephasing gradient accordantly. This approach was implemented on MR-systems of different field strengths, gradient systems, and vendors, and the dependencies of echo shift and acquisition parameters were analyzed. Data sets of phantoms and of mice under in vivo conditions were obtained using RF-spoiled 2D radial-FLASH. RESULTS: The presented method allowed for echo-shift detection and correction of < 1 data point, significantly improving the image quality in vitro and in vivo. Moreover, the method separated the effect of imbalanced gradients from those of magnetic inhomogeneities. The observed echo shifts were MR system-specifically dependent on acquisition parameters such as gradient strengths and dwell time. CONCLUSIONS: By acquiring 12 spokes for a certain set of acquisition parameters, the proposed method successfully corrects echo shift-related image artifacts independently of the MR system.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Algoritmos , Animales , Artefactos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Distribución Normal , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA