Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biol Int ; 46(11): 1947-1958, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998255

RESUMEN

Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-inflammatory/immunosuppressive innate immune responses. Here, we evaluated functional/biochemical LPG properties from six Leishmania amazonensis strains from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and LV79) had higher pro-inflammatory profiles for most of the mediators, including tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates from all strains were biochemically characterized and had polymorphisms in their repeat units. They consisted of three types: type I, repeat units devoid of side chains; type II, containing galactosylated side chains; and type III, containing glucosylated side chains. No relationship was observed between LPG type and the pro-inflammatory properties. Finally, to evaluate the susceptibility against antileishmanial agents, two strains with high (GV02, BA276) and one with low (BA336) pro-inflammatory activity were selected for chemotherapeutic tests in THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but displayed various responses against miltefosine (MIL) and glucantime (GLU). The GV02 strain (canine visceral leishmaniasis) had the highest IC50 for MIL (3.34 µM), whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher IC50 for GLU (6.87-12.19 mM). The highest IC50 against MIL shown by the GV02 strain has an impact on clinical management. Miltefosine is the only drug approved for dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis strains are warranted, especially in areas where dog infection by this species overlaps with those caused by Leishmania infantum.


Asunto(s)
Anfotericina B , Leishmania , Anfotericina B/farmacología , Animales , Perros , Glicoesfingolípidos , Interleucina-6 , Leishmania/genética , Antimoniato de Meglumina/farmacología , Ratones , Ratones Endogámicos BALB C , Fosforilcolina/análogos & derivados , Factor de Necrosis Tumoral alfa
2.
PLoS Negl Trop Dis ; 15(2): e0009137, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617528

RESUMEN

BACKGROUND: Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators' interactions, and vector exposure intensity associated with CVL resistance and susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: A prospective two-year study was conducted in an area endemic for CVL. Dogs were evaluated at 6-month intervals to determine infection, clinical manifestations, immune profile, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. After two years, 78% of the dogs were infected with L. infantum (53% susceptible and 47% resistant to CVL). Susceptible dogs presented higher splenic parasite load as well as persistence of the parasite during the follow-up, compared to resistant ones. Susceptible dogs also displayed a higher number of correlations among the investigated biological mediators, before and after infection diagnosis. At baseline, anti-saliva antibodies, indicative of exposure to the vector, were detected in 62% of the dogs, reaching 100% in one year. Higher sandfly exposure increased the risk of susceptibility to CVL by 1.6 times (CI: 1.11-2.41). We identified a discriminatory biosignature between the resistant and susceptible dogs assessing splenic parasite load, interaction of biological mediators, PGE2 serum levels and intensity of exposure to sandfly. All these parameters were elevated in susceptible dogs compared to resistant animals. CONCLUSIONS/SIGNIFICANCE: The biosignature identified in our study reinforces the idea that CVL is a complex multifactorial disease that is affected by a set of factors which are correlated and, for a better understanding of CVL, should not be evaluated in an isolated way.


Asunto(s)
Susceptibilidad a Enfermedades/veterinaria , Enfermedades de los Perros/parasitología , Leishmaniasis Visceral/veterinaria , Psychodidae , Animales , Mordeduras y Picaduras/veterinaria , Brasil , Dinoprostona/sangre , Susceptibilidad a Enfermedades/parasitología , Enfermedades de los Perros/inmunología , Perros , Femenino , Insectos Vectores , Leishmania infantum/aislamiento & purificación , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/transmisión , Masculino , Carga de Parásitos/veterinaria , Estudios Prospectivos , Saliva/inmunología , Bazo/parasitología
3.
Artículo en Inglés | MEDLINE | ID: mdl-32903718

RESUMEN

On the surface of the Leishmania promastigote, phosphoglycans (PG) such as lipophosphoglycan (LPG), proteophosphoglycan (PPG), free phosphoglycan polymers (PGs), and acid phosphatases (sAP), are dominant and contribute to the invasion and survival of Leishmania within the host cell by modulating macrophage signaling and intracellular trafficking. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by the LPG2 gene. Aiming to investigate the role of PG-containing molecules in Leishmania infantum infection process, herein we describe the generation and characterization of L. infantum LPG2-deficient parasites. This gene was unexpectedly identified as duplicated in the L. infantum genome, which impaired gene targeting using the conventional homologous recombination approach. This limitation was circumvented by the use of CRISPR/Cas9 technology. Knockout parasites were selected by agglutination assays using CA7AE antibodies followed by a lectin (RCA 120). Five clones were isolated and molecularly characterized, all revealing the expected edited genome, as well as the complete absence of LPG and PG-containing molecule expression. Finally, the deletion of LPG2 was found to impair the outcome of infection in human neutrophils, as demonstrated by a pronounced reduction (~83%) in intracellular load compared to wild-type parasite infection. The results obtained herein reinforce the importance of LPG and other PGs as virulence factors in host-parasite interactions.


Asunto(s)
Leishmania infantum , Leishmania major , Sistemas CRISPR-Cas , Duplicación de Gen , Edición Génica , Glicoesfingolípidos , Humanos , Leishmania infantum/genética , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Front Immunol ; 11: 1488, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765515

RESUMEN

The excessive release of heme during hemolysis contributes to the severity of sickle cell anemia (SCA) by exacerbating hemoglobin S (HbS) autoxidation, inflammation and systemic tissue damage. The present study investigated the effect of hydroxyurea (HU) on free radical neutralization and its stimulation of antioxidant genes in human peripheral blood mononuclear cells (PBMC) and human umbilical vein endothelial cells (HUVEC) in the presence or absence of hemin. HU (100 and 200 µM) significantly reduced the production of intracellular reactive oxygen species (ROS) induced by hemin at 70 µM in HUVEC. HUVECs treated with HU+hemin presented significant increases in nitric oxide (NO) production in culture supernatants. HU alone or in combination with hemin promoted the induction of superoxide dismutase-1 (SOD1) and glutathione disulfide-reductase (GSR) in HUVECs and PBMCs, and glutathione peroxidase (GPX1) in PBMCs. Microarray analysis performed in HUVECs indicated that HU induces increased expression of genes involved in the antioxidant response system: SOD2, GSR, microsomal glutathione S-transferase (MGST1), glutathione S-transferase mu 2 (GSTM2), carbonyl reductase 1 (CBR1) and klotho B (KLB). Significant increases in expression were observed in genes with kinase activity: protein kinase C beta (PRKCB), zeta (PRKCZ) and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 beta (PIK3C2B). HU also induced a significant increase in expression of the gene p62/sequestosome (p62/SQSTM1) and a significant decrease in the expression of the transcriptional factor BACH1 in HUVECs. Upstream analysis predicted the activation of Jun, miR-155-5p and mir-141-3p. These results suggest that HU directly scavenges free radicals and induces the expression of antioxidant genes via induction of the Nrf2 signaling pathway.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Endotelio Vascular/metabolismo , Hemoglobina Falciforme/metabolismo , Hidroxiurea/metabolismo , Leucocitos Mononucleares/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Hemina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Glutatión Peroxidasa GPX1
5.
Sci Rep ; 7(1): 14321, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084985

RESUMEN

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Asunto(s)
Glicoesfingolípidos/inmunología , Leishmania infantum/fisiología , Leishmaniasis Visceral/inmunología , Macrófagos/inmunología , PPAR gamma/metabolismo , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Células Cultivadas , Dinoprostona/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , Factores de Virulencia
6.
Front Immunol ; 8: 1127, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959260

RESUMEN

Leishmania parasites infect macrophages, causing a wide spectrum of human diseases, from cutaneous to visceral forms. In search of novel therapeutic targets, we performed comprehensive in vitro and ex vivo mapping of the signaling pathways upstream and downstream of antioxidant transcription factor [nuclear factor erythroid 2-related factor 2 (Nrf2)] in cutaneous leishmaniasis (CL), by combining functional assays in human and murine macrophages with a systems biology analysis of in situ (skin biopsies) CL patient samples. First, we show the PKR pathway controls the expression and activation of Nrf2 in Leishmania amazonensis infection in vitro. Nrf2 activation also required PI3K/Akt signaling and autophagy mechanisms. Nrf2- or PKR/Akt-deficient macrophages exhibited increased levels of ROS/RNS and reduced expression of Sod1 Nrf2-dependent gene and reduced parasite load. L. amazonensis counteracted the Nrf2 inhibitor Keap1 through the upregulation of p62 via PKR. This Nrf2/Keap1 observation was confirmed in situ in skin biopsies from Leishmania-infected patients. Next, we explored the ex vivo transcriptome in CL patients, as compared to healthy controls. We found the antioxidant response element/Nrf2 signaling pathway was significantly upregulated in CL, including downstream target p62. In silico enrichment analysis confirmed upstream signaling by interferon and PI3K/Akt, and validated our in vitro findings. Our integrated in vitro, ex vivo, and in silico approach establish Nrf2 as a central player in human cutaneous leishmaniasis and reveal Nrf2/PKR crosstalk and PI3K/Akt pathways as potential therapeutic targets.

7.
Sci Rep ; 7(1): 6171, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733584

RESUMEN

Chagas disease cardiomyopathy is a parasite-driven inflammatory disease to which there are no effective treatments. Here we evaluated the therapeutic potential of N,N-dimethylsphingosine(DMS), which blocks the production of sphingosine-1-phosphate(S1P), a mediator of cellular events during inflammatory responses, in a model of chronic Chagas disease cardiomyopathy. DMS-treated, Trypanosoma cruzi-infected mice had a marked reduction of cardiac inflammation, fibrosis and galectin-3 expression when compared to controls. Serum concentrations of galectin-3, IFNγ and TNFα, as well as cardiac gene expression of inflammatory mediators were reduced after DMS treatment. The gene expression of M1 marker, iNOS, was decreased, while the M2 marker, arginase1, was increased. DMS-treated mice showed an improvement in exercise capacity. Moreover, DMS caused a reduction in parasite load in vivo. DMS inhibited the activation of lymphocytes, and reduced cytokines and NO production in activated macrophage cultures in vitro, while increasing IL-1ß production. Analysis by qRT-PCR array showed that DMS treatment modulated inflammasome activation induced by T. cruzi on macrophages. Altogether, our results demonstrate that DMS, through anti-parasitic and immunomodulatory actions, can be beneficial in the treatment of chronic phase of T. cruzi infection and suggest that S1P-activated processes as possible therapeutic targets for the treatment of Chagas disease cardiomyopathy.


Asunto(s)
Arginasa/genética , Cardiomiopatía Chagásica/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Óxido Nítrico Sintasa de Tipo II/genética , Esfingosina/análogos & derivados , Animales , Cardiomiopatía Chagásica/genética , Cardiomiopatía Chagásica/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Galectina 3/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Interferón gamma/sangre , Activación de Linfocitos/efectos de los fármacos , Ratones , Carga de Parásitos , Esfingosina/administración & dosificación , Esfingosina/farmacología , Trypanosoma cruzi/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre
8.
Sci Rep ; 6: 32619, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27595802

RESUMEN

Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.


Asunto(s)
Biomarcadores/sangre , Enfermedades de los Perros/sangre , Enfermedades de los Perros/inmunología , Inflamación/sangre , Leishmaniasis Visceral/veterinaria , Estrés Oxidativo , Animales , Anticuerpos Antiprotozoarios/inmunología , Enfermedades de los Perros/genética , Enfermedades de los Perros/patología , Perros , Redes Reguladoras de Genes , Inflamación/genética , Inflamación/patología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Parásitos/fisiología , Curva ROC , Proteínas Recombinantes/metabolismo , Saliva/metabolismo
9.
J Immunol ; 196(4): 1865-73, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26800873

RESUMEN

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.


Asunto(s)
Leishmaniasis Cutánea/inmunología , Leucotrieno B4/biosíntesis , Macrófagos/inmunología , Macrófagos/parasitología , Neutrófilos/inmunología , Degranulación de la Célula/inmunología , Línea Celular , Técnicas de Cocultivo , Fibronectinas/inmunología , Humanos , Leishmania , Leishmania mexicana , Leucotrieno B4/inmunología , Microscopía Electrónica de Transmisión , Activación Neutrófila/inmunología
10.
Carbohydr Polym ; 128: 41-51, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-26005138

RESUMEN

Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.


Asunto(s)
Celulosa/química , Fibroínas/química , Nanocompuestos/química , Andamios del Tejido , Animales , Adhesión Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetulus , Gluconacetobacter , Ratones , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Solubilidad , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA