Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Rep ; 14(1): 9862, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684707

The process of creating a series of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-q) involved reacting 6-methoxynaphthalen-2-ol (1), the appropriate aromatic aldehydes (2a-q), and malononitrile (3) in an absolute ethanol/piperidine solution under Ultrasonic irradiation. However, the attempt to create 3-amino-1-aryl-1H-benzo[f]chromene-2,8-dicarbonitrile (6a, d, e) was unsuccessful when 6-cyanonaphthalen-2-ol (5) was stirred at room temperature, reflux, Microwave irradiation, or Ultrasonic irradiation. In addition, the target molecules were screened against Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli and Klebsiella pneumonia, as well as a panel of three human cancer cells lines such as MCF-7, HCT-116, HepG-2 and two normal cell lines HFL-1 and WI-38. The obtained results confirmed that the pyran derivatives (4 m, i, k) which have a double chlorine at 3,4/2,3/2,5-positions, a single halogen atom 3-Cl/4-Br (4c, e) and a double bromine at 3,5-positions with a single methoxy group at 2-position (4n), of phenyl ring, and, to a lesser extent, other pyran derivatives with monoihalogenated (4a, b, d, f), dihalogenated (4 g, h, j, l) or trisubstituent phenyl ring (4o, p, q). Furthermore, compounds 4b-e, g, i, j, m, and n showed negligible activity against the two normal cell lines, HFL-1 and WI-38. Moreover, compound 4 g exhibited the strongest antimicrobial activity among the other pyran derivatives (4a-f, g-q) when compared to Ciprofloxacin. The MIC was assessed and screened for compound 4 g, revealing bactericidal effects. Lastly, SAR and molecular docking were studied.


Antineoplastic Agents , Microbial Sensitivity Tests , Pyrans , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/chemical synthesis , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects
2.
Sci Rep ; 14(1): 7589, 2024 03 31.
Article En | MEDLINE | ID: mdl-38555345

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Antineoplastic Agents , Oxygen , Humans , MCF-7 Cells , Oxygen/metabolism , Molecular Docking Simulation , Drug Resistance, Neoplasm , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin/pharmacology
3.
Molecules ; 28(16)2023 Aug 14.
Article En | MEDLINE | ID: mdl-37630304

The current work was conducted to synthesize several novel anti-inflammatory quinazolines having sulfamerazine moieties as new 3CLpro, cPLA2, and sPLA2 inhibitors. The thioureido derivative 3 was formed when compound 2 was treated with sulfamerazine. Also, compound 3 was reacted with NH2-NH2 in ethanol to produce the N-aminoquinazoline derivative. Additionally, derivative 4 was reacted with 4-hydroxy-3-methoxybenzaldehyde, ethyl chloroacetate, and/or diethyl oxalate to produce quinazoline derivatives 5, 6, and 12, respectively. The results of the pharmacological study indicated that the synthesized 4-6 and 12 derivatives showed good 3CLpro, cPLA2, and sPLA2 inhibitory activity. The IC50 values of the target compounds 4-6, and 12 against the SARS-CoV-2 main protease were 2.012, 3.68, 1.18, and 5.47 µM, respectively, whereas those of baicalein and ivermectin were 1.72 and 42.39 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against sPLA2 were 2.84, 2.73, 1.016, and 4.45 µM, respectively, whereas those of baicalein and ivermectin were 0.89 and 109.6 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against cPLA2 were 1.44, 2.08, 0.5, and 2.39 µM, respectively, whereas those of baicalein and ivermectin were 3.88 and 138.0 µM, respectively. Also, incubation of lung cells with LPS plus derivatives 4-6, and 12 caused a significant decrease in levels of sPLA2, cPLA2, IL-8, TNF-α, and NO. The inhibitory activity of the synthesized compounds was more pronounced compared to baicalein and ivermectin. In contrast to ivermectin and baicalein, bioinformatics investigations were carried out to establish the possible binding interactions between the newly synthesized compounds 2-6 and 12 and the active site of 3CLpro. Docking simulations were utilized to identify the binding affinity and binding mode of compounds 2-6 and 12 with the active sites of 3CLpro, sPLA2, and cPLA2 enzymes. Our findings demonstrated that all compounds had outstanding binding affinities, especially with the key amino acids of the target enzymes. These findings imply that compound 6 is a potential lead for the development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 quinazoline derivative-based drugs. Compound 6 was shown to have more antiviral activity than baicalein and against 3CLpro. Furthermore, the IC50 value of ivermectin against the SARS-CoV-2 main protease was revealed to be 42.39 µM, indicating that it has low effectiveness.


COVID-19 , Humans , Molecular Docking Simulation , Ivermectin , SARS-CoV-2 , Sulfamerazine , Structure-Activity Relationship , Phospholipases A2, Cytosolic
4.
Curr Pharm Biotechnol ; 23(9): 1179-1203, 2022.
Article En | MEDLINE | ID: mdl-34077343

BACKGROUND: Quinazolines are a common class of nitrogen-containing heterocyclic scaffolds, which exhibit a broad spectrum of pharmacological activities. OBJECTIVES: In the present study, quinazoline and quinazolin-4-one derivatives were prepared, characterized, and evaluated for their biological activity, which may pave the way for possible therapeutic applications. MATERIALS AND METHODS: New derivatives of quinazoline and quinazolin-4-one were prepared and tested for antiulcerogenic, anti-inflammatory and hepatoprotective activities. RESULTS: The synthesized compounds were characterized by elemental analysis and spectral data. Also, the median lethal doses (LD50s) of compounds 1-3 in rats were 1125, 835 and 1785 mg/kg b.w., respectively. IC50 values of compounds (1-3) as measured by ABTS•+ radical method were 0.8, 0.92 and 0.08 mg/mL, respectively. Antiulcerogenic activity at dose 1/20 LD50 in albino rats was observed at 47.94, 24.60 and 56.45%, respectively. Anti-inflammatory effect at dose 1/20 LD50 of compounds (1-3) was observed in the induced edema model after 120 min. The prepared compounds were found to possess hepato gastric mucosa protective activity against ibuprofen-induced ulceration and LPS-induced liver toxicity, respectively, in rats etc. normalization of oxidative stress biomarkers, and inflammatory mediators were inhibited in peritoneal macrophage cells at a concentration of 100 µg/L. Molecular docking suggested that the most active compounds 1 and 2 could be positioned within the active sites of COX-2 at Arg121 and Tyr356, similarly to ibuprofen (Arg-120, Glu-524, and Tyr-355). The compound 3-COX-2 complex generated by docking revealed intricate interactions with a COX-2 channel. CONCLUSION: These findings suggest that compounds 1-3 exhibited good antioxidant, antiulcer, and anti-inflammatory activities, and were safe on liver enzymes in rats.


Ibuprofen , Quinazolines , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/metabolism , Cytokines , Molecular Docking Simulation , Quinazolines/pharmacology , Quinazolines/therapeutic use , Rats , Structure-Activity Relationship
5.
Bioinform Biol Insights ; 15: 11779322211055891, 2021.
Article En | MEDLINE | ID: mdl-34840499

BACKGROUND: Coronavirus-19 (COVID-19) pandemic is a worldwide public health problem that has been known in China since December 25, 2019. Phospholipids are structural components of the mammalian cytoskeleton and cell membranes. They suppress viral attachment to the plasma membrane and subsequent replication in lung cells. In the virus-infected lung, phospholipids are highly prone to oxidation by reactive oxygen species, leading to the production of oxidized phospholipids (OxPLs). OBJECTIVE: This study was carried out to explain the correlation between the level of plasma phospholipids in patients with COVID-19 infection and the levels of cytokine storms to assess the severity of the disease. METHODS: Plasma samples from 34 enrolled patients with mild, moderate, and severe COVID-19 infection were collected. Complete blood count (CBC), plasma levels of D-dimer, ferritin, C-reactive protein (CRP), cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), phospholipids, secretory phospholipase A2 (sPLA2)α2, and cytokine storms were estimated, and lung computed tomography (CT) imaging was detected. RESULTS: The CBC picture showed the presence of leukopenia, lymphopenia, and eosinopenia in patients with COVID-19 infection. Furthermore, a significant increase was found in plasma levels of D-dimer, CRP, ferritin, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-13 as well as sPLA2α2 activity compared to normal persons. However, plasma levels of phospholipids decreased in patients with moderate and severe COVID-19 infection, as well as significantly decreased in levels of triacylglycerols and HDL-C in plasma from patients with severe infection only, compared to normal persons. Furthermore, a lung CT scan showed the presence of inflammation in a patient with mild, moderate, and severe COVID-19 infection. CONCLUSIONS: This study shows that there is a correlation between plasma phospholipid depletion and elevated cytokine storm in patients with COVID-19 infection. Depletion of plasma phospholipid levels in patients with COVID-19 infection is due to oxidative stress, induction of cytokine storm, and systemic inflammatory response after endothelial cell damage promote coagulation. According to current knowledge, patients with COVID-19 infection may need to administer surfactant replacement therapy and sPLA2 inhibitors to treat respiratory distress syndrome, which helps them to maintain the interconnected surfactant structures.

6.
Molecules ; 23(6)2018 Jun 08.
Article En | MEDLINE | ID: mdl-29890691

Curcumin, a widely utilized flavor and coloring agent in food, has been shown to demonstrate powerful antioxidant, antitumor promoting and anti-inflammatory properties in vitro and in vivo. In the present work, synthesis of new heterocyclic derivatives based on Curcumin was studied. Compound 3 was synthesized via the reaction of furochromone carbaldehyde (1) with Curcumin (2) using pipredine as catalyst. Also, novel, 4,9-dimethoxy-5H-furo [3, 2-g] chromen-5-one derivatives 4a⁻d, 6a⁻d, 7, 8a⁻d, 9 and 10 were synthesized by the reactions of furochromone carbaldehyde (1) with different reagents (namely: appropriate amine 3a⁻d, appropriate hydrazine 5a⁻d, hydroxylamine hydrochloride, urea/thiourea, malononitrile, malononitrile with hydrazine hydrate). The structure of the synthesized products had been confirmed from their spectroscopic data (IR, ¹H-NMR, 13C-NMR and mass spectra). In the present investigation, the newly synthesized products were screened using the MTT colorimetric assay for their in vitro inhibition capacity in two human cancer cell lines (hepatocellular carcinoma (HEPG2) and breast cancer (MCF-7) as well as the normal cell line (human normal melanocyte, HFB4) in comparison to the known anticancer drugs: 5-flurouracil and doxorubicin. The anticancer activity results indicated that the synthesized products 4c and 8b showed growth inhibition activity against HEPG2 cell line and synthesized products 4b and 8a showed growth inhibition activity against MCF-7, but with varying intensities in comparison to the known anticancer drugs, 5-flurouracil and doxorubicin. Cyclin dependent kinase 2 (CDK2), a major cell cycle protein, was identified as a potential molecular target of Curcumin. Furthermore, Curcumin induced G1 cell cycle arrest, which is regulated by CDK2 in cancer cells. Therefore, we used molecular modelling to study in silico the possible inhibitory effect of CDK2 by Curcumin derivatives as a possible mechanism of these compounds as anticancer agents. The molecular docking study revealed that compounds 4b, 8a and 8b were the most effective compounds in inhibiting CDk2, and, this result was in agreement with cytotoxicity assay.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Curcumin/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Hep G2 Cells , Heterocyclic Compounds/chemical synthesis , Humans , Hydrogen Bonding , MCF-7 Cells , Molecular Docking Simulation , Spectrum Analysis/methods
7.
Ultrason Sonochem ; 17(5): 909-15, 2010 Jun.
Article En | MEDLINE | ID: mdl-20064736

A facile, solvent free, ecofriendly approach for the synthesis of pyridine-2,6-diones 4a-d, pyridazinone derivatives 8a-c and thienoazines 6 and 9 is herein described employing neat reaction conditions under both microwave and ultrasound irradiations. This solventless methodology is environmentally benign as it completely eliminates the use of solvent from the reaction procedure.


Green Chemistry Technology/methods , Pyridones/chemistry , Pyridones/radiation effects , Sonication
8.
Ultrason Sonochem ; 16(5): 660-8, 2009 Jun.
Article En | MEDLINE | ID: mdl-19112037

A variety of arylhydrazonopyridinones were prepared via heating cyanoacetamides with ethyl acetoacetate in absence of solvent under reflux conventionally or ultrasound irradiation or in a microwave oven. The formed products 5 and 6 could be readily converted to thienopyridones. Attempted addition of the latter to electron poor olefins afforded only arylhydrazonopyridinones.

9.
Molecules ; 12(8): 2061-79, 2007 Aug 24.
Article En | MEDLINE | ID: mdl-17960106

The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA) afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines 3a,b to give the corresponding aryl hydrazones 6a-h. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of 6c with secondary amines. The reaction of 6e,h with benzotriazolylacetone yielded 14a,b. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of 6b,e with dimethyl acetylenedicarboxylate (DMAD) in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.


Aldehydes/chemistry , Alkynes/chemistry , Heterocyclic Compounds/chemical synthesis , Hydrazones/chemistry , Microwaves , Aldehydes/radiation effects , Dimethylformamide/analogs & derivatives , Dimethylformamide/chemistry , Hydrazones/radiation effects
...