Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39092947

RESUMEN

The elongation of metallic nanoparticles (NPs) embedded in a dielectric matrix after irradiation with swift heavy ions is a phenomenon that has been known for several years. However, the precise mechanism behind this deformation process is still not fully understood, primarily due to the dearth of information during intermediate stages of deformation. In this study, we report the continuation of our previous work [Peña-Rodríguez et al., Sci. Rep. 7(1), 922 (2017)], exploiting the strong dependence of the localized surface plasmon resonance on the aspect ratio of elongated metal NPs to study the elongation kinetics in situ. In situ optical absorption spectra were measured using a polarizing beam splitter to separate the longitudinal and transverse plasmon modes of the anisotropic NPs. Then, the detailed geometrical and compositional parameters were determined from a fit of these spectra. The use of linearly polarized light allowed for a more accurate analysis of the elongation kinetics, particularly useful in the first stages, where longitudinal and transverse modes overlap.

2.
Chem Mater ; 35(22): 9603-9612, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38047181

RESUMEN

Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA