Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Mol Med (Berl) ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042290

RESUMEN

MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.

2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768979

RESUMEN

Triple-negative breast cancer (TNBC) can be further classified into androgen receptor (AR)-positive TNBC and AR-negative TNBC or quadruple-negative breast cancer (QNBC). Here, we investigated genomic instability in 53 clinical cases by array-CGH and miRNA expression profiling. Immunohistochemical analysis revealed that 64% of TNBC samples lacked AR expression. This group of tumors exhibited a higher level of copy number alterations (CNAs) and a higher frequency of cases affected by CNAs than TNBCs. CNAs in genes of the chromosome instability 25 (CIN25) and centrosome amplification (CA) signatures were more frequent in the QNBCs and were similar between the groups, respectively. However, expression levels of CIN25 and CA20 genes were higher in QNBCs. miRNA profiling revealed 184 differentially expressed miRNAs between the groups. Fifteen of these miRNAs were mapped at cytobands with CNAs, of which eight (miR-1204, miR-1265, miR-1267, miR-23c, miR-548ai, miR-567, miR-613, and miR-943), and presented concordance of expression and copy number levels. Pathway enrichment analysis of these miRNAs/mRNAs pairings showed association with genomic instability, cell cycle, and DNA damage response. Furthermore, the combined expression of these eight miRNAs robustly discriminated TNBCs from QNBCs (AUC = 0.946). Altogether, our results suggest a significant loss of AR in TNBC and a profound impact in genomic instability characterized by CNAs and deregulation of miRNA expression.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Inestabilidad Genómica/genética , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Persona de Mediana Edad , ARN Mensajero/genética
3.
Infect Genet Evol ; 91: 104832, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33812037

RESUMEN

MicroRNAs are gene expression regulators, associated with several human pathologies, including the ones caused by virus infections. Although their role in infection diseases is not completely known, they can exert double functions in the infected cell, by mediating the virus infection and/or regulating the immunity-related gene targets through complex networks of virus-host cell interactions. In this systematic review, the Pubmed, EMBASE, Scopus, Lilacs, Scielo, and EBSCO databases were searched for research articles published until October 22nd, 2020 that focused on describing the role, function, and/or association of miRNAs in SARS-CoV-2 human infection and COVID-19. Following the PRISMA 2009 protocol, 29 original research articles were selected. Most of the studies reported miRNA data based on the genome sequencing of SARS-CoV-2 isolates and computational prediction analysis. The latter predicted, by at least one independent study, 1266 host miRNAs to target the viral genome. Thirteen miRNAs were identified by four independent studies to target SARS-CoV-2 specific genes, suggested to act by interfering with their cleavage and/or translation process. The studies selected also reported on viral and host miRNAs that targeted host genes, on the expression levels of miRNAs in biological specimens of COVID-19 patients, and on the impact of viral genome mutations on miRNA function. Also, miRNAs that regulate the expression levels of the ACE2 and TMPRSS2 proteins, which are critical for the virus entrance in the host cells, were reported. In conclusion, despite the limited number of studies identified, based on the search terms and eligibility criteria applied, this systematic review provides evidence on the impact of miRNAs on SARS-CoV-2 infection and COVID-19. Although most of the reported viral/host miRNAs interactions were based on in silico prediction analysis, they demonstrate the relevance of the viral/host miRNA interaction for viral activity and host responses. In addition, the identified studies highlight the potential use of miRNAs as therapeutic targets against COVID-19, and other viral human diseases (This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) database (#CRD42020199290).


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Genoma Viral , MicroARNs/genética , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , COVID-19/patología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , MicroARNs/clasificación , MicroARNs/inmunología , Mutación , Unión Proteica , Receptores Virales/genética , Receptores Virales/inmunología , SARS-CoV-2/inmunología , Serina Endopeptidasas/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
Sci Rep ; 10(1): 16614, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024147

RESUMEN

The R337H is a TP53 germline pathogenic variant that has been associated with several types of cancers, including breast cancer. Our main objective was to determine the frequency of the R337H variant in sporadic breast cancer patients from Paraná state, South Brazil, its association with prognosis and its impact in genomic instability. The genotyping of 805 breast cancer tissues revealed a genotypic and allelic frequency of the R337H variant of 2.36% and 1.18%, respectively. In these R337H+ cases a lower mean age at diagnosis was observed when compared to the R337H-cases. Array-CGH analysis showed that R337H+ patients presented a higher number of copy number alterations (CNAs), compared to the R337H-. These CNAs affected genes and miRNAs that regulate critical cancer signaling pathways; a number of these genes were associated with survival after querying the KMplot database. Furthermore, homozygous (R337H+/R337H+) fibroblasts presented increased levels of copy number variants when compared to heterozygous or R337H- cells. In conclusion, the R337H variant may contribute to 2.36% of the breast cancer cases without family cancer history in Paraná. Among other mechanisms, R337H increases the level of genomic instability, as evidenced by a higher number of CNAs in the R337H+ cases compared to the R337H-.


Asunto(s)
Neoplasias de la Mama/genética , Inestabilidad Genómica/genética , Mutación de Línea Germinal/genética , Proteína p53 Supresora de Tumor/genética , Factores de Edad , Anciano , Brasil , Neoplasias de la Mama/mortalidad , Codón/genética , Exones/genética , Femenino , Dosificación de Gen/genética , Frecuencia de los Genes , Humanos , Persona de Mediana Edad , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA