Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Appl Genet ; 57(4): 543-547, 2016 Nov.
Article En | MEDLINE | ID: mdl-27056386

Staphylococcus haemolyticus is the second, most frequently isolated coagulase-negative staphyloccus (CoNS) from patients with hospital-acquired infections, and it is usually resistant to methicillin and other semisynthetic penicillins. The purpose of this study was to characterize staphylococcal cassette chromosome mec (SCCmec) elements and assess the in-vitro activity of antibiotics against 60 S. haemolyticus strains recovered from hospitalized patients. All these strains expressed methicillin resistance and carried a mecA gene. Moreover, all strains possessed a multiresistant phenotype, i.e., exhibited resistance to more than three classes of antibiotics. Eleven strains (18 %) harbored the SCCmec type V, containing ccrC and mec complex C. Three isolates harboring the ccrC gene did not contain a known mec complex. One strain positive for mec complex C was not typeable for ccr. This suggests that ccrC and mec complex C may exist autonomously. Only four strains carried mec complex B, whereas none of the S. haemolyticus harboured mec complex A. A new combination, which is mec complex B-ccrAB ship, was found in S. haemolitycus. The ccrAB ship was also identified in two strains of S. haemolitycus in which the mec gene complex was not identified. The results of the present study indicate that in S. haemolyticus the mec gene complex and the ccr genes are highly divergent. However, ccr sequence analysis does not allow the identification of a new allotype, based on a cut-off value of 85 % identity. The ccr genes in the S. haemolitycus strain showed ≥96 % sequence identity to the ccrAB2 genes.


Drug Resistance, Multiple, Bacterial/genetics , Genes, Bacterial , Staphylococcus haemolyticus/genetics , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , DNA, Bacterial/genetics , Humans , Methicillin Resistance , Sequence Analysis, DNA , Staphylococcus haemolyticus/drug effects
2.
Pol J Microbiol ; 65(2): 215-217, 2016 Jun 07.
Article En | MEDLINE | ID: mdl-30015446

This work aims to provide an insight into staphylococcal cassette chromosome mec elements and antibiotic resistance in clinical isolates of Staphylococcus epidermidis. The dominating type was SCCmec - IV. Fifteen isolates were assigned to SCCmec type III, two isolates to SCCmec type II. Most isolates were resistant to at least three of the non-ß-lactam antibiotics tested. None of the strains exhibited resistance to new generation antibiotics, such as daptomycin and linezolid. Also, none of these strains showed resistance to tigecycline and only four strains were resistant to rifampin i.e. antibiotics which are very efficient in treating biofilm-associated infections.

3.
Pol J Microbiol ; 65(2): 215-7, 2016.
Article En | MEDLINE | ID: mdl-28520329

This work aims to provide an insight into staphylococcal cassette chromosome mec elements and antibiotic resistance in clinical isolates of Staphylococcus epidermidis. The dominating type was SCCmec ­ IV. Fifteen isolates were assigned to SCCmec type III, two isolates to SCCmec type II. Most isolates were resistant to at least three of the non-ß-lactam antibiotics tested. None of the strains exhibited resistance to new generation antibiotics, such as daptomycin and linezolid. Also, none of these strains showed resistance to tigecycline and only four strains were resistant to rifampin i.e. antibiotics which are very efficient in treating biofilm-associated infections.


Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Methicillin Resistance , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Ascitic Fluid/microbiology , Bacteremia/microbiology , Catheter-Related Infections/microbiology , Humans , Prosthesis-Related Infections/microbiology
4.
Folia Microbiol (Praha) ; 61(2): 143-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26253583

Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).


Anti-Bacterial Agents/pharmacology , Lincosamides/pharmacology , Macrolides/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus hominis/drug effects , Streptogramins/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Microbial Sensitivity Tests , Staphylococcus hominis/classification , Staphylococcus hominis/enzymology , Staphylococcus hominis/genetics
5.
Acta Microbiol Immunol Hung ; 60(3): 261-70, 2013 Sep.
Article En | MEDLINE | ID: mdl-24060551

Methicillin-resistant Staphylococcus aureus (MRSA) causes serious nosocomial and community acquired infections. Resistance to methicillin is mediated by the mecA gene, which is inserted in a mobile genetic element called staphylococcal cassette chromosome mec (SCCmec). We determined the SCCmec types, the occurrence of genes encoding toxic shock syndrome toxin (tst), exfoliative toxin (eta, etb), Panton-Valentine leukocidin (pvl) as well as antibiotic susceptibility of these isolates. Among 65 hospital-acquired methicillin-resistant S. aureus (HA-MRSA) strains, SCCmec types II, III and IV were identified. Type III SCCmec was the most prevalent (62%), followed by mec types II (24%) and IV (14%). Four community acquired methicillin-resistant S. aureus (CA-MRSA) strains carried SCCmec type IV and were pvl-positive. The most prevalent gene among HA-MRSA was pvl. The toxic shock syndrome toxin and exfoliative toxin genes were found only in hospital-acquired methicillin-resistant S. aureus. The results of this study demonstrate that the SCCmec type III is predominant among strains recovered from hospitalized patients with infections and that these strains were resistant to many antibiotics used in the treatment of staphylococcal infections.


Bacterial Proteins/genetics , Bacterial Toxins/genetics , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Community-Acquired Infections/microbiology , Cross Infection/microbiology , Exotoxins/genetics , Humans , Leukocidins/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Multiplex Polymerase Chain Reaction , Penicillin-Binding Proteins , Poland/epidemiology , Staphylococcal Infections/epidemiology
...