Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798359

RESUMEN

Parkinson's disease (PD) is marked by degeneration in the nigrostriatal dopaminergic pathway, affecting motor control via complex changes in the cortico-basal ganglia-thalamic motor network, including the primary motor cortex (M1). The modulation of M1 neuronal activity by dopaminergic inputs, particularly from the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), plays a crucial role in PD pathophysiology. This study investigates how nigrostriatal dopaminergic degeneration influences M1 neuronal activity in rats using in vivo calcium imaging. Histological analysis confirmed dopaminergic lesion severity, with high lesion level rats showing significant motor deficits. Levodopa treatment improved fine motor abilities, particularly in high lesion level rats. Analysis of M1 calcium signals based on dopaminergic lesion severity revealed distinct M1 activity patterns. Animals with low dopaminergic lesion showed increased calcium events, while high lesion level rats exhibited decreased activity, partially restored by levodopa. These findings suggest that M1 activity is more sensitive to transient fluctuations in dopaminergic transmission, rather than to chronic high or low dopaminergic signaling. This study underscores the complex interplay between dopaminergic signaling and M1 neuronal activity in PD symptoms development. Further research integrating behavioral and calcium imaging data can elucidate mechanisms underlying motor deficits and therapeutic responses in PD.

2.
Bipolar Disord ; 26(4): 376-387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558302

RESUMEN

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Manía , Metanfetamina , Ratas Wistar , Área Tegmental Ventral , Animales , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Metanfetamina/farmacología , Masculino , Ratas , Manía/terapia , Manía/inducido químicamente , Estimulantes del Sistema Nervioso Central/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Trastorno Bipolar/terapia , Trastorno Bipolar/inducido químicamente
3.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38682230

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Oxidopamina , Núcleo Subtalámico , Animales , Oxidopamina/farmacología , Masculino , Conducta Animal/fisiología , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/fisiopatología , Ansiedad/etiología , Ansiedad/fisiopatología , Ratas , Ratas Sprague-Dawley , Reacción de Prevención/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología
4.
Sci Rep ; 14(1): 4775, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413790

RESUMEN

In the quest to unravel the mysteries of neurological diseases, comprehending the underlying mechanisms is supreme. The SH-SY5Y human neuroblastoma cell line serves as a crucial tool in this endeavor; however, the cells are known for its sensitivity and slow proliferation rates. Typically, this cell line is cultured with 10% Fetal Bovine Serum (FBS) supplement. Nu-Serum (NuS), a low-protein alternative to FBS, is promising to advance cell culture practices. Herein, we evaluated the substitution of NuS for FBS to test the hypothesis that an alternative serum supplement can aid and promote SH-SY5Y cell proliferation and differentiation. Our findings revealed that the NuS-supplemented group exhibited a notable increase in adhered cells compared to both the FBS and serum-free (SF) groups. Importantly, cell viability remained high in both sera treated groups, with the NuS-supplemented cells displaying significantly larger cell sizes compared to the SF-treated group. Furthermore, cell proliferation rates were higher in the NuS-treated group, and neuroblast-like morphology was observed earlier than FBS group. Notably, both FBS and NuS supported the differentiation of these cells into mature neurons. Our data supports NuS as an alternative for SH-SY5Y cell culture, with the potential to elevate the quality of research in the neuroscience field.


Asunto(s)
Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Diferenciación Celular , Proliferación Celular , Medios de Cultivo/farmacología
5.
Biomedicines ; 11(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37893236

RESUMEN

Lewy body dementia (LBD) is an often misdiagnosed and mistreated neurodegenerative disorder clinically characterized by the emergence of neuropsychiatric symptoms followed by motor impairment. LBD falls within an undefined range between Alzheimer's disease (AD) and Parkinson's disease (PD) due to the potential pathogenic synergistic effects of tau, beta-amyloid (Aß), and alpha-synuclein (αsyn). A lack of reliable and relevant animal models hinders the elucidation of the molecular characteristics and phenotypic consequences of these interactions. Here, the goal was to evaluate whether the viral-mediated overexpression of αsyn in adult hTau and APP/PS1 mice or the overexpression of tau in Line 61 hThy1-αsyn mice resulted in pathology and behavior resembling LBD. The transgenes were injected intravenously via the tail vein using AAV-PHP.eB in 3-month-old hThy1-αsyn, hTau, or APP/PS1 mice that were then aged to 6-, 9-, and 12-months-old for subsequent phenotypic and histological characterization. Although we achieved the widespread expression of αsyn in hTau and tau in hThy1-αsyn mice, no αsyn pathology in hTau mice and only mild tau pathology in hThy1-αsyn mice was observed. Additionally, cognitive, motor, and limbic behavior phenotypes were not affected by overexpression of the transgenes. Furthermore, our APP/PS1 mice experienced premature deaths starting at 3 months post-injection (MPI), therefore precluding further analyses at later time points. An evaluation of the remaining 3-MPI indicated no αsyn pathology or cognitive and motor behavioral changes. Taken together, we conclude that the overexpression of αsyn in hTau and APP/PS1 mice and tau in hThy1-αsyn mice does not recapitulate the behavioral and neuropathological phenotypes observed in LBD.

6.
Front Aging Neurosci ; 15: 1179086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637959

RESUMEN

Background: Intracytoplasmic inclusions comprised of aggregated alpha-synuclein (αsyn) represent a key histopathological feature of neurological disorders collectively termed "synucleinopathies," which includes Parkinson's disease (PD). Mutations and multiplications in the SNCA gene encoding αsyn cause familial forms of PD and a large body of evidence indicate a correlation between αsyn accumulation and disease. Decreasing αsyn expression is recognized as a valid target for PD therapeutics, with down-regulation of SNCA expression potentially attenuating downstream cascades of pathologic events. Here, we evaluated if Honokiol (HKL), a polyphenolic compound derived from magnolia tree bark with demonstrated neuroprotective properties, can modulate αsyn levels in multiple experimental models. Methods: Human neuroglioma cells stably overexpressing αsyn, mouse primary neurons, and human iPSC-derived neurons were exposed to HKL and αsyn protein and SNCA messenger RNA levels were assessed. The effect of HKL on rotenone-induced overexpression of αsyn levels was further assessed and transcriptional profiling of mouse cortical neurons treated with HKL was performed to identify potential targets of HKL. Results: We demonstrate that HKL can successfully reduce αsyn protein levels and SNCA expression in multiple in vitro models of PD with our data supporting a mechanism whereby HKL acts by post-transcriptional modulation of SNCA rather than modulating αsyn protein degradation. Transcriptional profiling of mouse cortical neurons treated with HKL identifies several differentially expressed genes (DEG) as potential targets to modulate SNCA expression. Conclusion: This study supports a HKL-mediated downregulation of SNCA as a viable strategy to modify disease progression in PD and other synucleinopathies. HKL has potential as a powerful tool for investigating SNCA gene modulation and its downstream effects.

7.
Brain Sci ; 14(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38248235

RESUMEN

Over the past 80 years, research on dopamine has undergone significant evolution, reshaping our understanding of its roles in the brain and the body [...].

8.
Synapse ; : e22073, 2018 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30291737

RESUMEN

Although dopamine is commonly studied for its role in incentive motivation, cognition, and various neuropsychiatric disorders, evidence from Parkinson's disease (PD) patients that present auditory deficits suggest that dopamine is also involved in central auditory processing. It has been recently discovered that the subparafascicular thalamic nucleus (SPF) sends dopaminergic projections to the inferior colliculus (IC), an important convergence hub for the ascending and descending auditory pathways. In the present study, our aim was to provide neurochemical evidence that activation of SPF neurons evokes dopamine release in the IC of anesthetized rats using fast-scan cyclic and paired pulse voltammetry in combination with carbon fiber microelectrodes. Electrical stimulation of the SPF (60 and 90 Hz) evoked dopamine release in the IC in a frequency-dependent manner, with higher frequencies evoking greater amplitude dopamine responses. Optogenetic-evoked dopamine responses were similar to the effects of electrical stimulation suggesting that electrical stimulation-evoked dopamine release was not due to nonspecific activation of fibers of passage, but rather to activation of SPF cells projecting to the IC. Selective dopamine reuptake blockade enhanced the evoked dopamine response, while selective blockade of serotonin did not, confirming the selectivity of the neurochemical recordings to dopamine. Therefore, the SPF neuronal pathway functionally mediates dopamine release in the IC and thus may be involved in auditory processing deficits associated with PD.

9.
Brain Res ; 1667: 68-73, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495305

RESUMEN

Repeated electrical stimulation of dopamine (dopamine) fibers can cause variable effects on further dopamine release; sometimes there are short-term decreases while in other cases short-term increases have been reported. Previous studies have failed to discover what factors determine in which way dopamine neurons will respond to repeated stimulation. The aim of the present study was therefore to investigate what determines the direction and magnitude of this particular form of short-term plasticity. Fixed potential amperometry was used to measure dopamine release in the nucleus accumbens in response to two trains of electrical pulses administered to the ventral tegmental area of anesthetized mice. When the pulse trains were of equal magnitude we found that low magnitude stimulation was associated with short-term suppression and high magnitude stimulation with short-term facilitation of dopamine release. Secondly, we found that the magnitude of the second pulse train was critical for determining the sign of the plasticity (suppression or facilitation), while the magnitude of the first pulse train determined the extent to which the response to the second train was suppressed or facilitated. This form of bidirectional plasticity might provide a mechanism to enhance signal-to-noise ratio of dopamine neurotransmission.


Asunto(s)
Dopamina/metabolismo , Plasticidad Neuronal/fisiología , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Estimulación Eléctrica , Masculino , Ratones Endogámicos C57BL , Microelectrodos
10.
ACS Chem Neurosci ; 8(2): 300-309, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28038309

RESUMEN

Diazepam is a benzodiazepine receptor agonist with anxiolytic and addictive properties. Although most drugs of abuse increase the level of release of dopamine in the nucleus accumbens, here we show that diazepam not only causes the opposite effect but also prevents amphetamine from enhancing dopamine release. We used 20 min sampling in vivo microdialysis and subsecond fast-scan cyclic voltammetry recordings at carbon-fiber microelectrodes to show that diazepam caused a dose-dependent decrease in the level of tonic and electrically evoked dopamine release in the nucleus accumbens of urethane-anesthetized adult male Swiss mice. In fast-scan cyclic voltammetry assays, dopamine release was evoked by electrical stimulation of the ventral tegmental area. We observed that 2 and 3 mg of diazepam/kg reduced the level of electrically evoked dopamine release, and this effect was reversed by administration of the benzodiazepine receptor antagonist flumazenil in doses of 2.5 and 5 mg/kg, respectively. No significant effects on measures of dopamine re-uptake were observed. Cyclic voltammetry experiments further showed that amphetamine (5 mg/kg, intraperitoneally) caused a significant increase in the level of dopamine release and in the half-life for dopamine re-uptake. Diazepam (2 mg/kg) significantly weakened the effect of amphetamine on dopamine release without affecting dopamine re-uptake. These results suggest that the pharmacological effects of benzodiazepines have a dopaminergic component. In addition, our findings challenge the classic view that all drugs of abuse cause dopamine release in the nucleus accumbens and suggest that benzodiazepines could be useful in the treatment of addiction to other drugs that increase the level of dopamine release, such as cocaine, amphetamines, and nicotine.


Asunto(s)
Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Diazepam/farmacología , Dopamina/metabolismo , Moduladores del GABA/farmacología , Núcleo Accumbens/efectos de los fármacos , Análisis de Varianza , Animales , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Técnicas Electroquímicas , Flumazenil/farmacología , Ratones , Microdiálisis
11.
J Pharmacol Pharmacother ; 6(1): 7-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709346

RESUMEN

OBJECTIVE: To investigate the antidepressant-like effect of piroxicam with a focus on serotonergic neurotransmission. MATERIALS AND METHODS: Rats were randomly distributed into the following groups: 0.9% saline control; 3 mg/kg pizotifen; 10 mg/kg sertraline; 10 mg/kg piroxicam; 10 mg/kg sertraline + 10 mg/kg piroxicam; 10 mg/kg sertraline + 3 mg/kg pizotifen; and 10 mg/kg piroxicam + 3 mg/kg pizotifen. All the drugs were dissolved in 0.9% saline. Three administrations of the drugs (piroxicam and sertraline) were performed 1, 5 and 24 h before testing the animals in the open field followed by the forced swim test (FST). Piroxicam and sertraline were administered orally by gavage and pizotifen was administered intraperitoneally 30 min before gavage. Immediately after the FST, the hippocampi were rapidly dissected for neurochemical analysis in high-performance liquid chromatography. RESULTS: Acute treatment with piroxicam promoted an antidepressant-like effect in the FST, which was associated with an increase in serotonin levels in the hippocampus. This effect was potentiated in the piroxicam + sertraline group but counteracted by administration of the non-selective serotonin receptor antagonist pizotifen. CONCLUSION: These results suggest that the antidepressant-like effect of piroxicam in the FST is mediated by the serotonin system; however, by different mechanisms from those of sertraline.

12.
Neurosci Biobehav Rev ; 58: 186-210, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25684727

RESUMEN

This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.


Asunto(s)
Ganglios Basales/fisiología , Estimulación Encefálica Profunda , Animales , Humanos
13.
Brain Res ; 1593: 95-105, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25301688

RESUMEN

Parkinson׳s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Systemic and intranigral exposure to rotenone in rodents reproduces many of the pathological and behavioral features of PD in humans and thus has been used as an animal model of the disease. Melatonin is a neurohormone secreted by the pineal gland, which has several important physiological functions. It has been reported to be neuroprotective in some animal models of PD. The present study investigated the effects of prolonged melatonin treatment in rats previously exposed to rotenone. The animals were intraperitoneally treated for 10 days with rotenone (2.5mg/kg) or its vehicle. 24h later, they were intraperitoneally treated with melatonin (10mg/kg) or its vehicle for 28 days. One day after the last rotenone exposure, the animals exhibited hypolocomotion in the open field test, which spontaneously reversed at the last motor evaluation. We verified that prolonged melatonin treatment after dopaminergic lesion did not alter motor function but produced antidepressant-like effects in the forced swim test, prevented the rotenone-induced reduction of striatal dopamine, and partially prevented tyrosine hydroxylase immunoreactivity loss in the SNpc. Our results indicate that melatonin exerts neuroprotective and antidepressant-like effects in the rotenone model of PD.


Asunto(s)
Antidepresivos/administración & dosificación , Melatonina/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Norepinefrina/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/patología , Porción Compacta de la Sustancia Negra/fisiopatología , Distribución Aleatoria , Ratas Wistar , Rotenona , Serotonina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
J Neural Transm (Vienna) ; 121(6): 671-82, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24463888

RESUMEN

Beyond the current hypothesis of depression, several new biological substrates have been proposed for this disorder. The present study investigated whether the anti-inflammatory drugs celecoxib and piroxicam have antidepressant activity in animal models of depression. After acute administration, we observed antidepressant-like effects of celecoxib (10 mg/kg) and piroxicam (10 mg/kg) in the modified forced swim test in rats. Piroxicam increased serotonin and norepinephrine levels in the hippocampus. Prolonged (21-day) treatment with celecoxib (10 mg/kg) and piroxicam (10 mg/kg) rescued sucrose preference in a chronic mild stress model of depression. Additionally, the chronic mild stress-induced reduction of hippocampal glutathione was prevented by treatment with celecoxib and piroxicam. Superoxide dismutase in the hippocampus was increased after chronic mild stress compared with the non-stressed saline group. The non-stressed celecoxib and piroxicam groups and stressed piroxicam group exhibited an increase in hippocampal superoxide dismutase activity compared with the stressed saline group. Lipid hydroperoxide was increased in the stressed group treated with vehicle and non-stressed group treated with imipramine but not in the stressed groups treated with celecoxib and piroxicam. These results suggest that the antidepressant-like effects of anti-inflammatory drugs might be attributable to enhanced antioxidant defenses and attenuated oxidative stress in the hippocampus.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Piroxicam/uso terapéutico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antidepresivos/farmacología , Celecoxib , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Privación de Alimentos , Glutatión/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Norepinefrina/metabolismo , Piroxicam/farmacología , Pirazoles/farmacología , Ratas , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos , Sacarosa/administración & dosificación , Sulfonamidas/farmacología , Superóxido Dismutasa/metabolismo , Natación/psicología , Factores de Tiempo , Privación de Agua
15.
Behav Brain Res ; 241: 112-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22771418

RESUMEN

We conducted an experiment in which hedonia, salience and prediction error hypotheses predicted different patterns of dopamine (DA) release in the striatum during learning of conditioned avoidance responses (CARs). The data strongly favor the latter hypothesis. It predicts that during learning of the 2-way active avoidance CAR task, positive prediction errors generated when rats do not receive an anticipated footshock (which is better than expected) cause DA release that reinforces the instrumental avoidance action. In vivo microdialysis in the rat striatum showed that extracellular DA concentration increased during early CAR learning and decreased throughout training returning to baseline once the response was well learned. In addition, avoidance learning was proportional to the degree of DA release. Critically, exposure of rats to the same stimuli but in an unpredictable, unavoidable, and inescapable manner, did not produce alterations from baseline DA levels as predicted by the prediction error but not hedonic or salience hypotheses. In addition, rats with a partial lesion of substantia nigra DA neurons, which did not show increased DA levels during learning, failed to learn this task. These data represent clear and unambiguous evidence that it was the factor positive prediction error, and not hedonia or salience, which caused increase in the tonic level of striatal DA and which reinforced learning of the instrumental avoidance response.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Animales , Electrochoque , Masculino , Microdiálisis , Neuronas/metabolismo , Ratas , Ratas Wistar
16.
Neurobiol Learn Mem ; 94(2): 229-39, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20595069

RESUMEN

The pedunculopontine tegmental nucleus (PPTg) targets nuclei in the basal ganglia, including the substantia nigra pars compacta (SNc), in which neuronal loss occurs in Parkinson's disease, a condition in which patients show cognitive as well as motor disturbances. Partial loss and functional abnormalities of neurons in the PPTg are also associated with Parkinson's disease. We hypothesized that the interaction of PPTg and SNc might be important for cognitive impairments and so investigated whether disrupting the connections between the PPTg and SNc impaired learning of a conditioned avoidance response (CAR) by male Wistar rats. The following groups were tested: PPTg unilateral; SNc unilateral; PPTg-SNc ipsilateral (ipsilateral lesions in PPTg and SNc); PPTg-SNc contralateral (contralateral lesions in PPTg and SNc); sham lesions (of each type). SNc lesions were made with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine HCl (MPTP, 0.6micromol); PPTg lesions with ibotenate (24nmol). After recovery, all rats underwent 50-trial sessions of 2-way active avoidance conditioning for 3 consecutive days. Rats with unilateral lesions in PPTg or SNc learnt this, however rats with contralateral (but not ipsilateral) combined lesions in both structures presented no sign of learning. This effect was not likely to be due to sensorimotor impairment because lesions did not affect reaction time to the tone or footshock during conditioning. However, an increased number of non-responses were observed in the rats with contralateral lesions. The results support the hypothesis that a functional interaction between PPTg and SNc is needed for CAR learning and performance.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Clásico/fisiología , Vías Nerviosas/citología , Núcleo Tegmental Pedunculopontino/citología , Sustancia Negra/citología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Análisis de Varianza , Animales , Dopamina/metabolismo , Lateralidad Funcional/fisiología , Ácido Iboténico/farmacología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neurotoxinas/farmacología , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Tiempo de Reacción/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...