Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
Adv Sci (Weinh) ; 11(4): e2306391, 2024 Jan.
Article En | MEDLINE | ID: mdl-38044299

Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3 NH2 , MA0 ) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2 AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3 Bi2 I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2 H5 NH2 , EA0 ) and butylamine (CH3 (CH2 )3 NH2 , BA0 ), and another compound, Cs3 Sb2 I9 , by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.

2.
Nat Commun ; 14(1): 5486, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37679329

Despite considerable research efforts on photoelectrochemical water splitting over the past decades, practical application faces challenges by the absence of efficient, stable, and scalable photoelectrodes. Herein, we report a metal-halide perovskite-based photoanode for photoelectrochemical water oxidation. With a planar structure using mesoporous carbon as a hole-conducting layer, the precious metal-free FAPbBr3 photovoltaic device achieves 9.2% solar-to-electrical power conversion efficiency and 1.4 V open-circuit voltage. The photovoltaic architecture successfully applies to build a monolithic photoanode with the FAPbBr3 absorber, carbon/graphite conductive protection layers, and NiFe catalyst layers for water oxidation. The photoanode delivers ultralow onset potential below 0 V versus the reversible hydrogen electrode and high applied bias photon-to-current efficiency of 8.5%. Stable operation exceeding 100 h under solar illumination by applying ultraviolet-filter protection. The photothermal investigation verifies the performance boost in perovskite photoanode by photothermal effect. This study is significant in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

3.
ACS Appl Energy Mater ; 6(11): 5720-5728, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37323208

Di(9-methyl-3-carbazolyl)-(4-anisyl)amine is presented as an effective hole-transporting material suitable for application in perovskite solar cells. It is obtained by a three-step synthesis from inexpensive starting compounds. It has a relatively high glass transition temperature of 93 °C and thermal stability with 5% weight loss at 374 °C. The compound exhibits reversible double-wave electrochemical oxidation below +1.5 V and polymerization at higher potential. A mechanism for its oxidation is proposed based on electrochemical impedance and electron spin resonance spectroscopy investigations, ultraviolet-visible-near-infrared absorption spectroelectrochemistry results, and density functional theory-based calculations. Vacuum-deposited films of the compound are characterized by a low ionization potential of 5.02 ± 0.06 eV and hole mobility of 10-3 cm2/(Vs) at an electric field of 4 × 105 V/cm. The newly synthesized compound has been used to fabricate dopant-free hole-transporting layers in perovskite solar cells. A power conversion efficiency of 15.5% was achieved in a preliminary study.

4.
Phys Chem Chem Phys ; 24(48): 29850-29861, 2022 Dec 14.
Article En | MEDLINE | ID: mdl-36468421

To gain a deeper understanding of the underlying charge processes in dye sensitized photocathodes, lateral electron hopping across dye-sensitized NiO photocathodes was investigated. For dye-sensitized systems, hole hopping across photoanodes has been studied extensively in the literature but no expansive studies on electron hopping in sensitized photocathodes exist today. Therefore, an organic p-type dye (TIP) with donor-linker-acceptor design, showing high stability and electrochemical reversibility, was used to study the electron transfer dynamics (electron-hopping) between dyes with temperature dependent spectroelectrochemistry and computational simulations. Besides intermolecular electron-hopping across the surface with a rate constant in the order of 105 s-1, our results show a second electron hopping pathway between NiO surface states with a rate constant in the order of 107 s-1, which precedes the electron hopping between the dyes. Upon application of a potential step negative enough to reduce both the dye and NiO surface states, the majority of NiO surface states need to be reduced before intermolecular electron transfer can take place. The results indicate that, in contrast to sensitized photoanodes where intermolecular charge transfer is known to influence recombination kinetics, intermolecular charge transport processes in TIP dye sensitized NiO photocathodes is less relevant because the fast electron transport between NiO surface states likely dominates recombination kinetics.

5.
Chem Soc Rev ; 51(17): 7509-7530, 2022 Aug 30.
Article En | MEDLINE | ID: mdl-35929481

Halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) approaching 26%, however, the stability issue hinders their commercialization. Due to the soft ionic nature of perovskite materials, the strain effect on perovskite films has been recently recognized as one of the key factors that affects their opto-electronic properties and the device stability. Herein, we summarized the origins of strain, characterization techniques, and implications of strain on both perovskite film and solar cells as well as various strategies to control the strain. Finally, we proposed effective strategies for future strain engineering. We believe this comprehensive review could further facilitate researchers with a deeper understanding of strain effect and enhance the research activity in engineering the strain to further improve performance and especially the device stability toward commercialization.

6.
ACS Mater Au ; 2(3): 301-312, 2022 May 11.
Article En | MEDLINE | ID: mdl-35578703

Lead halide perovskite solar cells have reached power conversion efficiencies during the past few years that rival those of crystalline silicon solar cells, and there is a concentrated effort to commercialize them. The use of gold electrodes, the current standard, is prohibitively costly for commercial application. Copper is a promising low-cost electrode material that has shown good stability in perovskite solar cells with selective contacts. Furthermore, it has the potential to be self-passivating through the formation of CuI, a copper salt which is also used as a hole selective material. Based on these opportunities, we investigated the interface reactions between lead halide perovskites and copper in this work. Specifically, copper was deposited on the perovskite surface, and the reactions were followed in detail using synchrotron-based and in-house photoelectron spectroscopy. The results show a rich interfacial chemistry with reactions starting upon deposition and, with the exposure to oxygen and moisture, progress over many weeks, resulting in significant degradation of both the copper and the perovskite. The degradation results not only in the formation of CuI, as expected, but also in the formation of two previously unreported degradation products. The hope is that a deeper understanding of these processes will aid in the design of corrosion-resistant copper-based electrodes.

7.
Chem Soc Rev ; 50(22): 12450-12550, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34590638

Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.

8.
Nanoscale ; 13(26): 11478-11487, 2021 Jul 08.
Article En | MEDLINE | ID: mdl-34165116

The cesium cation (Cs+) is widely used as a dopant for highly efficient and stable formamidinium lead tri-halide perovskite (FAPbX3, X = I, Br, Cl) solar cells. Herein, we introduce a small amount of cesium acetate (CsAc) that can effectively stabilize FAMAPbI3 under thermal- and light illumination-stress. We show that incorporated Cs+ leads to relaxation of strain in the perovskite layer, and that Ac- forms a strong intermediate phase with PbI2, which can help the intercalation of the PbI2 film with Cs+ and cation halide (FAI, MAI, MACl) in the sequential deposition process. The addition of CsAc reduces the trap density in the resulting perovskite layers and extends their carrier lifetime. The CsAc-modified perovskite solar cells show less hysteresis phenomena and enhanced operational and thermal stability in ambient conditions. Our findings provide insight into how dopants and synthesis precursors play an important role in efficient and stable perovskite solar cells.

9.
ACS Appl Energy Mater ; 4(1): 510-522, 2021 Jan 25.
Article En | MEDLINE | ID: mdl-33615157

High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnO x electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)3 and (Cs,FA)Pb(Br,I)3 and in this study on Cs0.05FA0.79MA0.16PbBr0.51I2.49 (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnO x exposure was therefore suggested to form a nonideal perovskite/SnO x interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnO x growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 °C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnO x on the perovskite. Although measurements on the perovskite bulk below and the SnO x film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.

10.
Chem Sci ; 12(48): 16035-16053, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-35024126

A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I-/I3 - redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2 back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 µs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 µs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.

11.
J Am Chem Soc ; 142(43): 18668-18678, 2020 Oct 28.
Article En | MEDLINE | ID: mdl-33063996

Surface states of mesoporous NiO semiconductor films have particular properties differing from the bulk and are able to dramatically influence the interfacial electron transfer and adsorption of chemical species. To achieve a better performance of NiO-based p-type dye-sensitized solar cells (p-DSCs), the function of the surface states has to be understood. In this paper, we applied a modified atomic layer deposition procedure that is able to passivate 72% of the surface states on NiO by depositing a monolayer of Al2O3. This provides us with representative control samples to study the functions of the surface states on NiO films. A main conclusion is that surface states, rather than the bulk, are mainly responsible for the conductivity in mesoporous NiO films. Furthermore, surface states significantly affect dye regeneration (with I-/I3- as redox couple) and hole transport in NiO-based p-DSCs. A new dye regeneration mechanism is proposed in which electrons are transferred from reduced dye molecules to intra-bandgap states, and then to I3- species. The intra-bandgap states here act as catalysts to assist I3- reduction. A more complete mechanism is suggested to understand the particular hole transport behavior in p-DSCs, in which the hole transport time is independent of light intensity. This is ascribed to the percolation hole hopping on the surface states. When the concentration of surface states was significantly reduced, the light-independent charge transport behavior in pristine NiO-based p-DSCs transformed into having an exponential dependence on light intensity, similar to that observed in TiO2-based n-type DSCs. These conclusions on the function of surface states provide new insight into the electronic properties of mesoporous NiO films.

12.
ACS Appl Energy Mater ; 3(5): 4331-4337, 2020 May 26.
Article En | MEDLINE | ID: mdl-32954222

Scalable methods for deposition of lead halide perovskite thin films are required to enable commercialization of the highly promising perovskite photovoltaics. Here, we have developed a slot-die coating process under ambient conditions for methylammonium lead iodide (MAPbI3) perovskite on heated substrates (about 90 °C on the substrate surface). Dense, highly crystalline perovskite films with large grains (100-200 µm) were obtained by careful adjustment of the deposition parameters, using solutions that are similar but more dilute than those used in typical spin-coating procedures. Without any further after treatments, such as antisolvent treatment or vapor annealing, we achieved power conversion efficiencies up of 14.5% for devices with the following structure: conducting tin oxide glass (FTO)/TiO2/MAPbI3/spiro-MeOTAD/Au. The performance was limited by the significant roughness of the deposited films, resulting from the hot-casting method, and the relatively high deposition temperature, which led to a defect-rich surface due to loss of MAI.

13.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Article En | MEDLINE | ID: mdl-32806671

The investigation of innovative electrolytes based on nontoxic and nonflammable solvents is an up-to-date, intriguing challenge to push forward the environmental sustainability of dye-sensitized solar cells (DSSCs). Water is one of the best choices, thus 100% aqueous electrolytes are proposed in this work, which are gelled with xanthan gum. This well-known biosourced polymer matrix is able to form stable and easily processable hydrogel electrolytes based on the iodide/triiodide redox couple. An experimental strategy, also supported by the multivariate chemometric approach, is used here to study the main factors influencing DSSCs efficiency and stability, leading to an optimized system able to improve its efficiency by 20% even after a 1200 h aging test, and reaching an overall performance superior to 2.7%. In-depth photoelectrochemical investigation demonstrates that DSSCs performance based on hydrogel electrolytes depends on many factors (e.g., dipping conditions, redox mediator concentrations, etc.), that must be carefully quantified and correlated in order to optimize these hydrogels. Photovoltaic performances are also extremely reproducible and stable in an open cell filled in air atmosphere, noticeably without any vacuum treatments.

14.
Adv Mater ; 32(26): e1905653, 2020 Jul.
Article En | MEDLINE | ID: mdl-32424936

Considering the natural abundance, the optoelectronic properties, and the electricity production cost, iron pyrite (FeS2 ) has a strong appeal as a solar cell material. The maximum conversion efficiency of FeS2 solar cells demonstrated to date, however, is below 3%, which is significantly below the theoretical efficiency limit of 25%. This poor conversion efficiency is mainly the result of the poor photovoltage, which has never exceeded 0.2 V with a device having appreciable photocurrent. Several studies have explored the origin of the low photovoltage in FeS2 solar cells, and have improved understanding of the photovoltage loss mechanisms. Fermi level pinning, surface inversion, ionization of bulk donor states, and photocarrier loss have been suggested as the underlying reasons for the photovoltage loss in FeS2 . Given the past and more recent scientific data, together with contradictory results to some extent, it is timely to discuss these mechanisms to give an updated view of the present status and remaining challenges. Herein, the current understanding of the origin of low photovoltage in FeS2 solar cells is critically reviewed, preceded by a succinct discussion on the electronic structure and optoelectronic properties. Finally, suggestions of a few research directions are also presented.

15.
ACS Appl Mater Interfaces ; 12(6): 7125-7134, 2020 Feb 12.
Article En | MEDLINE | ID: mdl-31958005

Perovskite solar cells (PSCs), which have surprisingly emerged in recent years, are now aiming at commercialization. Rapid, low-temperature, and continuous fabrication processes that can produce high-efficiency PSCs with a reduced fabrication cost and shortened energy payback time are important challenges on the way to commercialization. Herein, we report a reactive ion etching (RIE) method, which is an ultrafast room-temperature technique, to fabricate mesoporous TiO2 (mp-TiO2) as an electron transport layer for high-efficiency PSCs. Replacing the conventional high-temperature annealing process by RIE reduces the total processing time for fabricating 20 PSCs by 40%. Additionally, the RIE-processed mp-TiO2 exhibits enhanced electron extraction, whereupon the optimized RIE-mp-TiO2-based PSC exhibits a power conversion efficiency (PCE) of 19.60% without J-V hysteresis, when the devices were optimized with a TiCl4 surface treatment process. Finally, a flexible PSC employing RIE-mp-TiO2 is demonstrated with 17.29% PCE. Considering that the RIE process has been actively used in the semiconductor industry, including for the fabrication of silicon photovoltaic modules, the process developed in this work could be easily applied toward faster, simpler, and cheaper manufacturing of PSC modules.

16.
ACS Appl Mater Interfaces ; 12(6): 7212-7221, 2020 Feb 12.
Article En | MEDLINE | ID: mdl-31958007

Lead halide perovskite solar cells have significantly increased in both efficiency and stability over the last decade. An important aspect of their long-term stability is the reaction between the perovskite and other materials in the solar cell. This includes the contact materials and their degradation if they can potentially come into contact through, e.g., pinholes or material diffusion and migration. Here, we explore the interactions of silver contacts with lead halide perovskites of different compositions by using a model system where thermally evaporated silver was deposited directly on the surface of the perovskites. Using X-ray photoelectron spectroscopy with support from scanning electron microscopy, X-ray diffraction, and UV-visible absorption spectroscopy, we studied the film formation and degradation of silver on perovskites with different compositions. The deposited silver does not form a continuous silver film but instead tends to form particles on a bare perovskite surface. These particles are initially metallic in character but degrade into AgI and AgBr over time. The degradation and migration appear unaffected by the replacement of methylammonium with cesium but are significantly slowed down by the complete replacement of iodide with bromide. The direct contact between silver and the perovskite also significantly accelerates the degradation of the perovskite, with a significant loss of organic cations and the possible formation of PbO, and, at the same time, changed the surface morphology of the iodide-rich perovskite interface. Our results further indicate that an important degradation pathway occurred through gas-phase perovskite degradation products. This highlights the importance of control over the interface materials and the use of completely hermetical barrier layers for the long-term stability and therefore the commercial viability of silver electrodes.

17.
Chemphyschem ; 20(24): 3322-3327, 2019 12 16.
Article En | MEDLINE | ID: mdl-31631458

The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA ) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx , leading to higher current densities by Li doping. The electrical conductivity of NiOx is improved by Li doping. Further improvements of the device were made by using an additional ZnO layer onto PCBM, to remove shunt paths, leading to a PCE of 14.2 % and a fill factor of 0.72.

18.
Inorg Chem ; 58(18): 12040-12052, 2019 Sep 16.
Article En | MEDLINE | ID: mdl-31483638

Metal halide compounds with photovoltaic properties prepared from solution have received increased attention for utilization in solar cells. In this work, low-toxicity cesium bismuth iodides are synthesized from solution, and their photovoltaic and optical properties as well as electronic and crystal structures are investigated. The X-ray diffraction patterns reveal that a CsI/BiI3 precursor ratio of 1.5:1 can convert pure rhombohedral BiI3 to pure hexagonal Cs3Bi2I9, but any ratio intermediate of this stoichiometry and pure BiI3 yields a mixture containing the two crystalline phases Cs3Bi2I9 and BiI3, with their relative fraction depending on the CsI/BiI3 ratio. Solar cells from the series of compounds are characterized, showing the highest efficiency for the compounds with a mixture of the two structures. The energies of the valence band edge were estimated using hard and soft X-ray photoelectron spectroscopy for more bulk and surface electronic properties, respectively. On the basis of these measurements, together with UV-vis-near-IR spectrophotometry, measuring the band gap, and Kelvin probe measurements for estimating the work function, an approximate energy diagram has been compiled clarifying the relationship between the positions of the valence and conduction band edges and the Fermi level.

19.
Nanoscale ; 11(41): 19488-19496, 2019 Nov 07.
Article En | MEDLINE | ID: mdl-31552996

Electron selective layers are important to the efficiency, stability and hysteresis of perovskite solar cells. Photo-annealing is a low-cost, roll-to-roll-compatible process that can be applied to the post-treatment fabrication of sol-gel based metal oxide layers. Here, we fabricate an amorphous titanium oxide electron selective layer at a low temperature in a dry atmosphere using a UV light annealing system and compare it with a thermal annealing process. Active oxygen species are created by using UV light to promote hydrolysis and condense the TiO2 precursor, which removes organic ligands effectively. The photo-annealed TiO2-based perovskite solar cell has a power conversion efficiency of 19.37% without hysteresis.

20.
Front Chem ; 7: 77, 2019.
Article En | MEDLINE | ID: mdl-30838200

Dye-sensitized solar cells have been investigated intensively during the last three decades. Nevertheless, there are still many aspects to be explored to further improve their performance. Dye molecules can be modified endlessly for better performance. For instance, steric groups can be introduced to slow down recombination reactions and avoid unfavorable aggregation. There is a need for more optimal dye packing on the mesoporous TiO2 surface to increase light absorption and promote a better blocking effect. Novel redox mediators and HTMs are key elements to reach higher performing DSC as they can offer much higher output voltage than the traditional triiodide/iodide redox couple.

...