Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Risk Anal ; 44(1): 244-263, 2024 Jan.
Article En | MEDLINE | ID: mdl-37105939

Autonomous underwater gliders (AUGs) are effective platforms for oceanic research and environmental monitoring. However, complex underwater environments with uncertainties could pose the risk of vehicle loss during their missions. It is therefore essential to conduct risk prediction to assist decision making for safer operations. The main limitation of current studies for AUGs is the lack of a tailored method for risk analysis considering both dynamic environments and potential functional failures of the vehicle. Hence, this study proposed a copula-based approach for evaluating the risk of AUG loss in dynamic underwater environments. The developed copula Bayesian network (CBN) integrated copula functions into a traditional Bayesian belief network (BBN), aiming to handle nonlinear dependencies among environmental variables and inherent technical failures. Specifically, potential risk factors with causal effects were captured using the BBN. A Gaussian copula was then employed to measure correlated dependencies among identified risk factors. Furthermore, the dependence analysis and CBN inference were performed to assess the risk level of vehicle loss given various environmental observations. The effectiveness of the proposed method was demonstrated in a case study, which considered deploying a Slocum G1 Glider in a real water region. Risk mitigation measures were provided based on key findings. This study potentially contributes a tailored tool of risk prediction for AUGs in dynamic environments, which can enhance the safety performance of AUGs and assist in risk mitigation for decision makers.

2.
J Hazard Mater ; 436: 129039, 2022 08 15.
Article En | MEDLINE | ID: mdl-35533522

Adaptive control was applied to follower gliders in cooperating multiple glider teams on missions to delineate underwater oil patches. The influence of water currents on the motion of the oil patches was included. The cooperation strategy with adaptive control was compared with strategies without cooperation or adaptive control through simulation experiments. In addition, the optimal number of follower gliders in a team was assessed. From the simulations, strategies with adaptive control achieved a higher score of performance, defined as a measure of the percentage of valuable-rich information collected to the percentage of the mission area covered by information-rich patches; this measure was applied when the percentage of the area of information-rich patches was less than 60%. The cooperation strategy with adaptive control had a lower duty cycle and a longer mission duration, but had the best score of performance, especially for long-duration missions. Backseat driver hardware was installed on a Slocum glider to support adaptive control and a field experiment successfully realized cooperation between a simulated scout glider and the follower glider and the adaptive control of the follower. The experiment also indicated the limitations of timely completion of missions owing to the operating speed of the glider relative to that of ambient currents.


Time Factors , Computer Simulation
3.
Risk Anal ; 40(6): 1258-1278, 2020 06.
Article En | MEDLINE | ID: mdl-32144834

The use of autonomous underwater vehicles (AUVs) for various applications have grown with maturing technology and improved accessibility. The deployment of AUVs for under-ice marine science research in the Antarctic is one such example. However, a higher risk of AUV loss is present during such endeavors due to the extremities in the Antarctic. A thorough analysis of risks is therefore crucial for formulating effective risk control policies and achieving a lower risk of loss. Existing risk analysis approaches focused predominantly on the technical aspects, as well as identifying static cause and effect relationships in the chain of events leading to AUV loss. Comparatively, the complex interrelationships between risk variables and other aspects of risk such as human errors have received much lesser attention. In this article, a systems-based risk analysis framework facilitated by system dynamics methodology is proposed to overcome existing shortfalls. To demonstrate usefulness of the framework, it is applied on an actual AUV program to examine the occurrence of human error during Antarctic deployment. Simulation of the resultant risk model showed an overall decline in human error incident rate with the increase in experience of the AUV team. Scenario analysis based on the example provided policy recommendations in areas of training, practice runs, recruitment policy, and setting of risk tolerance level. The proposed risk analysis framework is pragmatically useful for risk analysis of future AUV programs to ensure the sustainability of operations, facilitating both better control and monitoring of risk.


Motor Vehicles , Reproducibility of Results , Algorithms , Antarctic Regions , Computer Simulation , Humans , Oceans and Seas , Risk Assessment
4.
Risk Anal ; 40(4): 818-841, 2020 04.
Article En | MEDLINE | ID: mdl-31799748

With the maturing of autonomous technology and better accessibility, there has been a growing interest in the use of autonomous underwater vehicles (AUVs). The deployment of AUVs for under-ice marine science research in the Antarctic is one such example. However, a higher risk of AUV loss is present during such endeavors due to the extreme operating environment. To control the risk of loss, existing risk analyses approaches tend to focus more on the AUV's technical aspects and neglect the role of soft factors, such as organizational and human influences. In addition, the dynamic and complex interrelationships of risk variables are also often overlooked due to uncertainties and challenges in quantification. To overcome these shortfalls, a hybrid fuzzy system dynamics risk analysis (FuSDRA) is proposed. In the FuSDRA framework, system dynamics models the interrelationships between risk variables from different dimensions and considers the time-dependent nature of risk while fuzzy logic accounts for uncertainties. To demonstrate its application, an example based on an actual Antarctic AUV program is presented. Focusing on funding and experience of the AUV team, simulation of the FuSDRA risk model shows a declining risk of loss from 0.293 in the early years of the Antarctic AUV program, reaching a minimum of 0.206 before increasing again in later years. Risk control policy recommendations were then derived from the analysis. The example demonstrated how FuSDRA can be applied to inform funding and risk management strategies, or broader application both within the AUV domain and on other complex technological systems.

5.
Risk Anal ; 39(12): 2744-2765, 2019 Dec.
Article En | MEDLINE | ID: mdl-31318487

The use of autonomous underwater vehicles (AUVs) for various scientific, commercial, and military applications has become more common with maturing technology and improved accessibility. One relatively new development lies in the use of AUVs for under-ice marine science research in the Antarctic. The extreme environment, ice cover, and inaccessibility as compared to open-water missions can result in a higher risk of loss. Therefore, having an effective assessment of risks before undertaking any Antarctic under-ice missions is crucial to ensure an AUV's survival. Existing risk assessment approaches predominantly focused on the use of historical fault log data of an AUV and elicitation of experts' opinions for probabilistic quantification. However, an AUV program in its early phases lacks historical data and any assessment of risk may be vague and ambiguous. In this article, a fuzzy-based risk assessment framework is proposed for quantifying the risk of AUV loss under ice. The framework uses the knowledge, prior experience of available subject matter experts, and the widely used semiquantitative risk assessment matrix, albeit in a new form. A well-developed example based on an upcoming mission by an ISE-explorer class AUV is presented to demonstrate the application and effectiveness of the proposed framework. The example demonstrates that the proposed fuzzy-based risk assessment framework is pragmatically useful for future under-ice AUV deployments. Sensitivity analysis demonstrates the validity of the proposed method.

6.
PLoS One ; 10(3): e0119622, 2015.
Article En | MEDLINE | ID: mdl-25751251

For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.


Fisheries/instrumentation , Animals , Decapoda , Stress, Mechanical
7.
Risk Anal ; 23(6): 1309-21, 2003 Dec.
Article En | MEDLINE | ID: mdl-14641903

Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1.


Arsenic/analysis , Copper/analysis , Water Pollutants, Chemical/analysis , Arsenic/toxicity , Copper/toxicity , Ecosystem , Fuel Oils , Industry , Marine Biology , Monte Carlo Method , Risk Assessment , United States , Water Pollutants, Chemical/toxicity
8.
Environ Manage ; 32(6): 778-87, 2003 Dec.
Article En | MEDLINE | ID: mdl-15160901

The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.


Industry , Models, Theoretical , Petroleum , Soil Pollutants/poisoning , Water Pollutants/poisoning , Aluminum Silicates , Clay , Conservation of Energy Resources , Engineering , Facility Design and Construction , Humans , Occupational Health , Risk Assessment , Safety , Seawater , Transportation , Water Pollution/prevention & control
...