Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 758331, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174100

RESUMEN

Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism Caenorhabditis elegans against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the pals-genes. We examine the genetic variation in the pals-family for traces of selection and explore the molecular and phenotypic effects of having distinct pals-gene alleles. Genetic analysis of 330 global C. elegans strains reveals that genetic diversity within the IPR-related pals-genes can be categorized in a few haplotypes worldwide. Importantly, two key IPR regulators, pals-22 and pals-25, are in a genomic region carrying signatures of balancing selection, suggesting that different evolutionary strategies exist in IPR regulation. We infected eleven C. elegans strains that represent three distinct pals-22 pals-25 haplotypes with Orsay virus to determine their susceptibility. For two of these strains, N2 and CB4856, the transcriptional response to infection was also measured. The results indicate that pals-22 pals-25 haplotype shapes the defense against OrV and host genetic variation can result in constitutive activation of IPR genes. Our work presents evidence for balancing genetic selection of immunity genes in C. elegans and provides a novel perspective on the functional diversity that can develop within a main antiviral response in natural host populations.


Asunto(s)
Proteínas de Caenorhabditis elegans , Nodaviridae , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/virología , Proteínas de Caenorhabditis elegans/genética , Interacciones Huésped-Patógeno/genética , Nodaviridae/patogenicidad
2.
J Int AIDS Soc ; 21(9): e25185, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30375818

RESUMEN

INTRODUCTION: The latent reservoir is the main barrier on the road to HIV cure, and clinical approaches towards eradication are often evaluated by their effect on proviral DNA. To ensure inclusiveness and representativeness in HIV cure studies, proviral DNA quantification assays that are able to detect all common circulating HIV clades are urgently needed. Here, three HIV DNA assays targeting three different genomic regions were evaluated for their sensitivity and subtype-tolerance using digital PCR. METHODS: A subtype-B-specific assay targeting gag (GAG) and two assays targeting conserved sequences in ltr and pol (LTR and JO) were assessed for their sensitivity and subtype-tolerance in digital PCR (Bio-Rad QX200), using a panel of serially diluted subtype reference plasmids as well as a panel of clinical isolates. Both panels represent subtypes A, B, C, D, F, G and circulating recombinant forms (CRFs) AE and AG, which together are responsible for 94% of HIV infections worldwide. RESULTS: HIV subtype was observed to greatly affect HIV DNA quantification results. Robust regression analysis of the serially diluted plasmid panel showed that the GAG assay was only able to linearly quantify subtype B, D and G isolates (4/13 reference plasmids, average R2 = 0.99), whereas LTR and JO were able to quantify all tested isolates (13/13 reference plasmids, respective average R2 = 0.99 and 0.98). In the clinical isolates panel, isolates were considered detectable if all replicates produced a positive result. The GAG assay could detect HIV DNA in four out of five subtype B and one out of two subtype D isolates, whereas the LTR and JO assays detected HIV DNA in all twenty-nine tested isolates. LTR and JO results were found to be equally precise but more precise than GAG. CONCLUSIONS: The results demonstrate the need for a careful validation of proviral reservoir quantification assays prior to investigations into non-B subtype reservoirs. The LTR and JO assays can sensitively and reliably quantify HIV DNA in a panel that represents the worldwide most prevalent subtypes and CRFs (A, B, C, D, AE, F, G and AG), justifying their application in future trials aimed at global HIV cure.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Provirus , ADN Viral/análisis , Humanos , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Provirus/genética , Sensibilidad y Especificidad
3.
PLoS One ; 9(2): e89760, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587016

RESUMEN

Orsay virus (OrV) is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi). However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.


Asunto(s)
Caenorhabditis elegans/virología , Modelos Animales de Enfermedad , Patrón de Herencia/inmunología , Nodaviridae/fisiología , Interferencia de ARN/inmunología , Infecciones por Virus ARN/inmunología , Replicación Viral/fisiología , Análisis de Varianza , Animales , Caenorhabditis elegans/inmunología , Cartilla de ADN/genética , Nodaviridae/patogenicidad , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Sci Rep ; 4: 3912, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24468752

RESUMEN

Organismal development is the most dynamic period of the life cycle, yet we have only a rough understanding of the dynamics of gene expression during adolescent transition. Here we show that adolescence in Caenorhabditis elegans is characterized by a spectacular expression shift of conserved and highly polymorphic genes. Using a high resolution time series we found that in adolescent worms over 10,000 genes changed their expression. These genes were clustered according to their expression patterns. One cluster involved in chromatin remodelling showed a brief up-regulation around 50 h post-hatch. At the same time a spectacular shift in expression was observed. Sequence comparisons for this cluster across many genotypes revealed diversifying selection. Strongly up-regulated genes showed signs of purifying selection in non-coding regions, indicating that adolescence-active genes are constrained on their regulatory properties. Our findings improve our understanding of adolescent transition and help to eliminate experimental artefacts due to incorrect developmental timing.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Mapeo Cromosómico , Expresión Génica , Perfilación de la Expresión Génica , Variación Genética , Familia de Multigenes/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...