Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Cell Chem Biol ; 30(9): 1064-1075.e8, 2023 09 21.
Article En | MEDLINE | ID: mdl-37716347

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.


Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Lymphocyte Activation , Receptors, Antigen, T-Cell , CD4-Positive T-Lymphocytes
2.
BMC Med ; 21(1): 147, 2023 04 17.
Article En | MEDLINE | ID: mdl-37069550

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are anti-cancer therapeutics often prescribed for long-term treatment. Many of these treatments cause cardiotoxicity with limited cure. We aim to clarify molecular mechanisms of TKI-induced cardiotoxicity so as to find potential targets for treating the adverse cardiac complications. METHODS: Eight TKIs with different levels of cardiotoxicity reported are selected. Phenotypic and transcriptomic responses of human cardiomyocytes to TKIs at varying doses and times are profiled and analyzed. Stress responses and signaling pathways that modulate cardiotoxicity induced by three TKIs are validated in cardiomyocytes and rat hearts. RESULTS: Toxicity rank of the eight TKIs determined by measuring their effects on cell viability, contractility, and respiration is largely consistent with that derived from database or literature, indicating that human cardiomyocytes are a good cellular model for studying cardiotoxicity. When transcriptomes are measured for selected TKI treatments with different levels of toxicity in human cardiomyocytes, the data are classified into 7 clusters with mainly single-drug clusters. Drug-specific effects on the transcriptome dominate over dose-, time- or toxicity-dependent effects. Two clusters with three TKIs (afatinib, ponatinib, and sorafenib) have the top enriched pathway as the endoplasmic reticulum stress (ERS). All three TKIs induce ERS in rat primary cardiomyocytes and ponatinib activates the IRE1α-XBP1s axis downstream of ERS in the hearts of rats underwent a 7-day course of drug treatment. To look for potential triggers of ERS, we find that the three TKIs induce transient reactive oxygen species followed by lipid peroxidation. Inhibiting either PERK or IRE1α downstream of ERS blocks TKI-induced cardiac damages, represented by the induction of cardiac fetal and pro-inflammatory genes without causing more cell death. CONCLUSIONS: Our data contain rich information about phenotypic and transcriptional responses of human cardiomyocytes to eight TKIs, uncovering potential molecular mechanisms in modulating cardiotoxicity. ER stress is activated by multiple TKIs and leads to cardiotoxicity through promoting expression of pro-inflammatory factors and cardiac fetal genes. ER stress-induced inflammation is a promising therapeutic target to mitigate ponatinib- and sorafenib-induced cardiotoxicity.


Myocytes, Cardiac , Protein Serine-Threonine Kinases , Humans , Rats , Animals , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/etiology , Sorafenib/metabolism , Sorafenib/pharmacology , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Apoptosis , Endoplasmic Reticulum Stress/physiology
3.
Nat Commun ; 13(1): 7652, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-36496454

Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.


Dementia , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Drug Repositioning , Network Pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Sulfonylurea Compounds , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Dementia/drug therapy , Dementia/etiology , Medical Records
4.
Elife ; 112022 06 23.
Article En | MEDLINE | ID: mdl-35737447

Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).


Neoplasms , Ubiquitin , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Humans , Mitochondrial Proteins/metabolism , Neoplasms/drug therapy , Proteolysis , Thiolester Hydrolases/metabolism , Ubiquitin/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination
5.
Anal Chem ; 93(27): 9541-9548, 2021 07 13.
Article En | MEDLINE | ID: mdl-34180655

Quantitative diagnostics that are rapid, inexpensive, sensitive, robust, and field-deployable are needed to contain the spread of infectious diseases and inform treatment strategies. While current gold-standard techniques are highly sensitive and quantitative, they are slow and require expensive equipment. Conversely, current rapid field-deployable assays available provide essentially binary information about the presence of the target analyte, not a quantitative measure of concentration. Here, we report the development of a molecular diagnostic test [quantitative recombinase polymerase amplification (qRPA)] that utilizes competitive amplification during a recombinase polymerase amplification (RPA) assay to provide semi-quantitative information on a target nucleic acid. We demonstrate that qRPA can quantify DNA, RNA, and viral titers in HIV and COVID-19 patient samples and that it is more robust to environmental perturbations than traditional RPA. These features make qRPA potentially useful for at-home testing to monitor the progress of viral infections or other diseases.


COVID-19 , Nucleic Acid Amplification Techniques , Humans , Molecular Diagnostic Techniques , Recombinases , SARS-CoV-2 , Sensitivity and Specificity
6.
J Virol Methods ; 294: 114153, 2021 08.
Article En | MEDLINE | ID: mdl-33984398

The COVID-19 pandemic has resulted in an unparalleled need for viral testing capacity across the world and is a critical requirement for successful re-opening of economies. The logistical barriers to near-universal testing are considerable. We have designed an injection molded polypropylene anterior nares swab, the Rhinostic, with a screw cap integrated into the swab handle that is compatible with fully automated sample accessioning and processing. The ability to collect and release both human and viral material is comparable to that of several commonly used swabs on the market. SARS-CoV-2 is stable on dry Rhinostic swabs for at least 3 days, even at 42 °C, and elution can be achieved with small volumes. To test the performance of the Rhinostic in patients, 119 samples were collected with Rhinostic and the positive and negative determinations were 100 % concordant with samples collected using Clinical Laboratory Improvement Amendments (CLIA) use approved nasal swabs at a clinical lab. The Rhinostic swab and barcoded tube set can be produced, sterilized, and packaged cost effectively and is designed to be adopted by clinical laboratories using automation to increase throughput and dramatically reduce the cost of a standard SARS-CoV-2 detection pipeline.


COVID-19 Nucleic Acid Testing/instrumentation , Nasopharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , Specimen Handling/methods , Automation, Laboratory , COVID-19 Nucleic Acid Testing/methods , Humans , Nasopharynx/anatomy & histology , Polypropylenes
7.
Nat Cancer ; 2(1): 66-82, 2021 01.
Article En | MEDLINE | ID: mdl-33738458

Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.


Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Macrophages , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
8.
Nat Commun ; 12(1): 1033, 2021 02 15.
Article En | MEDLINE | ID: mdl-33589615

Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.


Alzheimer Disease/drug therapy , Drugs, Investigational/pharmacology , Machine Learning , Nerve Tissue Proteins/genetics , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , Prescription Drugs/pharmacology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Drug Repositioning , Drugs, Investigational/chemistry , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Nootropic Agents/chemistry , Pharmacogenetics/methods , Pharmacogenetics/statistics & numerical data , Polypharmacology , Prescription Drugs/chemistry , Primary Cell Culture , Severity of Illness Index
9.
Nat Commun ; 11(1): 5920, 2020 11 20.
Article En | MEDLINE | ID: mdl-33219228

Rapid, inexpensive, robust diagnostics are essential to control the spread of infectious diseases. Current state of the art diagnostics are highly sensitive and specific, but slow, and require expensive equipment. Here we report the development of a molecular diagnostic test for SARS-CoV-2 based on an enhanced recombinase polymerase amplification (eRPA) reaction. eRPA has a detection limit on patient samples down to 5 viral copies, requires minimal instrumentation, and is highly scalable and inexpensive. eRPA does not cross-react with other common coronaviruses, does not require RNA purification, and takes ~45 min from sample collection to results. eRPA represents a first step toward at-home SARS-CoV-2 detection and can be adapted to future viruses within days of genomic sequence availability.


Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Nucleic Acid Amplification Techniques/methods , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , RNA/metabolism , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Directed DNA Polymerase/metabolism , Real-Time Polymerase Chain Reaction , Recombinases/metabolism , SARS-CoV-2 , Saliva/virology , Virion/genetics
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 6054-6057, 2020 07.
Article En | MEDLINE | ID: mdl-33019351

Contrast sensitivity is a key visual ability for everyday tasks, as well as a potential indicator of important optical and neurological diseases. Current clinical standards, based on visual discrimination performance on printed charts, present problems that could be bypassed using electronic devices. This work describes the development of new tests for contrast sensitivity, based on the detection of a moving target on a computer screen and in virtual reality headset. It presents preliminary evaluation of these innovations by comparison of their performance, using healthy adults with normal vision and by artificially altering their contrast sensitivity. The results demonstrate consistent correlation between all test modalities explored.


Contrast Sensitivity , Virtual Reality , Reality Testing , Visual Perception
11.
bioRxiv ; 2020 May 29.
Article En | MEDLINE | ID: mdl-32577657

Rapid, inexpensive, robust diagnostics are essential to control the spread of infectious diseases. Current state of the art diagnostics are highly sensitive and specific, but slow, and require expensive equipment. We developed a molecular diagnostic test for SARS-CoV-2, FIND (Fast Isothermal Nucleic acid Detection), based on an enhanced isothermal recombinase polymerase amplification reaction. FIND has a detection limit on patient samples close to that of RT-qPCR, requires minimal instrumentation, and is highly scalable and cheap. It can be performed in high throughput, does not cross-react with other common coronaviruses, avoids bottlenecks caused by the current worldwide shortage of RNA isolation kits, and takes ~45 minutes from sample collection to results. FIND can be adapted to future novel viruses in days once sequence is available. ONE SENTENCE SUMMARY: Sensitive, specific, rapid, scalable, enhanced isothermal amplification method for detecting SARS-CoV-2 from patient samples.

12.
Science ; 368(6495): 1135-1140, 2020 06 05.
Article En | MEDLINE | ID: mdl-32499444

Determining where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes in principle offer a cheap and sensitive way to determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under 1 hour at meter-scale resolution and near single-spore sensitivity and can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, a Cas13a RNA-guided nucleic acid detection assay, facilitating its implementation in a wide range of applications.


DNA Barcoding, Taxonomic/methods , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , Environmental Microbiology , Microbiota/genetics , Spores/genetics , CRISPR-Cas Systems , DNA, Bacterial/genetics , DNA, Fungal/genetics , RNA, Guide, Kinetoplastida
13.
Sci Rep ; 10(1): 5324, 2020 03 24.
Article En | MEDLINE | ID: mdl-32210275

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structure-guided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of ~500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A.


Protease Inhibitors/pharmacology , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , MCF-7 Cells , Protease Inhibitors/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination/drug effects
14.
Cell Chem Biol ; 26(8): 1067-1080.e8, 2019 08 15.
Article En | MEDLINE | ID: mdl-31178407

The target profiles of many drugs are established early in their development and are not systematically revisited at the time of FDA approval. Thus, it is often unclear whether therapeutics with the same nominal targets but different chemical structures are functionally equivalent. In this paper we use five different phenotypic and biochemical assays to compare approved inhibitors of cyclin-dependent kinases 4/6-collectively regarded as breakthroughs in the treatment of hormone receptor-positive breast cancer. We find that transcriptional, proteomic, and phenotypic changes induced by palbociclib, ribociclib, and abemaciclib differ significantly; abemaciclib in particular has advantageous activities partially overlapping those of alvocidib, an older polyselective CDK inhibitor. In cells and mice, abemaciclib inhibits kinases other than CDK4/6 including CDK2/cyclin A/E-implicated in resistance to CDK4/6 inhibition-and CDK1/cyclin B. The multifaceted experimental and computational approaches described here therefore uncover underappreciated differences in CDK4/6 inhibitor activities with potential importance in treating human patients.


Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Polypharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Female , Humans , Mice , Mice, Nude , Protein Kinase Inhibitors/chemistry , United States , United States Food and Drug Administration
16.
Sci Data ; 6(1): 92, 2019 06 14.
Article En | MEDLINE | ID: mdl-31201317

Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and an inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and combined multi-omics dataset (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys that is searchable through a user-friendly web application: http://hbcreports.med.harvard.edu/fmm/ . Two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgically-induced fibrosis model (unilateral ureteral obstruction (UUO)). mRNA and small RNA sequencing, as well as 10-plex tandem mass tag (TMT) proteomics were performed with kidney samples from different time points over the course of fibrosis development. The bioinformatics workflow used to process, technically validate, and combine the single omics data will be described. In summary, we present temporal multi-omics data from fibrotic mouse kidneys that are accessible through an interrogation tool (Mouse Kidney Fibromics browser) to provide a searchable transcriptome and proteome for kidney fibrosis researchers.


Disease Models, Animal , Kidney Diseases/genetics , MicroRNAs/genetics , Proteome , RNA, Messenger/genetics , Animals , Fibrosis , Mice , Proteomics , Ureteral Obstruction
17.
Cell Syst ; 8(5): 412-426.e7, 2019 05 22.
Article En | MEDLINE | ID: mdl-31078528

Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.


Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/pharmacology , Acclimatization , Antineoplastic Agents/pharmacology , Cardiotoxicity/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Erlotinib Hydrochloride/pharmacology , Gene Expression Profiling/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Lapatinib/pharmacology , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Sorafenib/pharmacology , Sunitinib/pharmacology
18.
PLoS Biol ; 17(4): e3000225, 2019 04.
Article En | MEDLINE | ID: mdl-30964857

The localization, mass, and dynamics of microtubules are important in many processes. Cells may actively monitor the state of their microtubules and respond to perturbation, but how this occurs outside mitosis is poorly understood. We used gene-expression analysis in quiescent cells to analyze responses to subtle and strong perturbation of microtubules. Genes encoding α-, ß, and γ-tubulins (TUBAs, TUBBs, and TUBGs), but not δ- or ε-tubulins (TUBDs or TUBEs), exhibited the strongest differential expression response to microtubule-stabilizing versus destabilizing drugs. Quantitative PCR of exon versus intron sequences confirmed that these changes were caused by regulation of tubulin mRNA stability and not transcription. Using tubulin mRNA stability as a signature to query the Gene Expression Omnibus (GEO) database, we find that tubulin genes respond to toxins known to damage microtubules. Importantly, we find many other experimental perturbations, including multiple signaling and metabolic inputs that trigger tubulin differential expression, suggesting their novel, to our knowledge, role in the regulation of the microtubule cytoskeleton. Mechanistic follow-up confirms that one important physiological signal, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activity, indeed regulates tubulin mRNA stability via changes in microtubule dynamics. We propose that tubulin gene expression is regulated as part of many coordinated biological responses, with wide implications in physiology and toxicology. Furthermore, we present a new way to discover microtubule regulation using transcriptomics.


Microtubules/genetics , Tubulin/genetics , Animals , Cell Line , Cytoskeleton/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Phosphatidylinositol 3-Kinases , RNA Stability , Signal Transduction , Transcriptome , Tubulin/metabolism
19.
J Am Soc Nephrol ; 29(12): 2820-2833, 2018 12.
Article En | MEDLINE | ID: mdl-30361326

BACKGROUND: The death of epithelial cells in the proximal tubules is thought to be the primary cause of AKI, but epithelial cells that survive kidney injury have a remarkable ability to proliferate. Because proximal tubular epithelial cells play a predominant role in kidney regeneration after damage, a potential approach to treat AKI is to discover regenerative therapeutics capable of stimulating proliferation of these cells. METHODS: We conducted a high-throughput phenotypic screen using 1902 biologically active compounds to identify new molecules that promote proliferation of primary human proximal tubular epithelial cells in vitro. RESULTS: The primary screen identified 129 compounds that stimulated tubular epithelial cell proliferation. A secondary screen against these compounds over a range of four doses confirmed that eight resulted in a significant increase in cell number and incorporation of the modified thymidine analog EdU (indicating actively proliferating cells), compared with control conditions. These eight compounds also stimulated tubular cell proliferation in vitro after damage induced by hypoxia, cadmium chloride, cyclosporin A, or polymyxin B. ID-8, an inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), was the top candidate identified as having a robust proproliferative effect in two-dimensional culture models as well as a microphysiologic, three-dimensional cell culture system. Target engagement and genetic knockdown studies and RNA sequencing confirmed binding of ID-8 to DYRK1A and upregulation of cyclins and other cell cycle regulators, leading to epithelial cell proliferation. CONCLUSIONS: We have identified a potential first-in-class compound that stimulates human kidney tubular epithelial cell proliferation after acute damage in vitro.


Kidney Tubules/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Acute Kidney Injury/drug therapy , Cell Culture Techniques/methods , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Drug Discovery , Drug Evaluation, Preclinical , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , High-Throughput Screening Assays , Humans , Kidney Tubules/cytology , Kidney Tubules/enzymology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Regenerative Medicine , Dyrk Kinases
20.
J Am Soc Nephrol ; 28(12): 3579-3589, 2017 Dec.
Article En | MEDLINE | ID: mdl-28814511

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-ß signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-ß-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-ß signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.


Kidney/pathology , Phospholipase D/metabolism , Animals , Extracellular Matrix/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Folic Acid/adverse effects , Gene Library , Gene Silencing , Glycoproteins/metabolism , HEK293 Cells , Humans , Immune System , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/metabolism , Receptor, trkA/metabolism , Signal Transduction , Up-Regulation
...