Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Rev Esp Quimioter ; 28(3): 139-44, 2015 Jun.
Artículo en Español | MEDLINE | ID: mdl-26032998

RESUMEN

INTRODUCTION: Quinolones are one of the types of antibiotics with higher resistance rates in the last years. At molecular level, quinolones block type II topoisomerases producing double strand breaks (DSBs). These DSBs could play a double role, as inductors of the quinolone bactericidal effects but also as mediators of the resistance and tolerance mechanisms. MATERIAL AND METHODS: In this work we have studied the molecular pathways responsible for DSBs repair in the quinolone susceptibility: the stalled replication fork reversal (recombination-dependent) (RFR), the SOS response induction, the translesional DNA synthesis (TLS) and the nucleotide excision repair mechanisms (NER). For this reason, at the European University in Madrid, we analysed the minimal inhibitory concentration (MIC) to three different quinolones in Escherichia coli mutant strains coming from different type culture collections. RESULTS: recA, recBC, priA and lexA mutants showed a significant reduction on the MIC values for all quinolones tested. No significant changes were observed on mutant strains for TLS and NER. DISCUSSION: These data indicate that in the presence of quinolones, RFR mechanisms and the SOS response could be involved in the quinolone susceptibility.


Asunto(s)
Antibacterianos/farmacología , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Quinolonas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Ciprofloxacina/farmacología , ADN Helicasas/genética , ADN Helicasas/fisiología , Replicación del ADN , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/fisiología , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Terapia Molecular Dirigida , Ácido Nalidíxico/farmacología , Norfloxacino/farmacología , Rec A Recombinasas/genética , Rec A Recombinasas/fisiología , Reparación del ADN por Recombinación , Respuesta SOS en Genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/fisiología
2.
Rev. esp. quimioter ; 28(3): 139-144, jun. 2015. ilus, tab
Artículo en Español | IBECS | ID: ibc-141728

RESUMEN

Introducción. Las quinolonas son uno de los tipos de antibióticos cuyas tasas de resistencia se han visto incrementadas en los últimos años. A nivel molecular, bloquean a las topoisomerasas tipo II generando cortes de doble cadena (double strand breaks, DSBs) en el ADN. Se ha propuesto que estos DSBs podrían tener un doble papel, como mediadores de su efecto bactericida y también como responsables de desencadenar los mecanismos de resistencia y tolerancia a las quinolonas. Material y métodos. En el presente trabajo hemos estudiado la implicación de los mecanismos de reparación de DSBs en la sensibilidad a las quinolonas: reanudación de horquillas de replicación paradas dependiente de recombinación (RFR), inducción de la respuesta SOS, reparación por síntesis translesional (TLS) y escisión de nucleótidos (NER). Para ello, en los laboratorios de la Universidad Europea de Madrid, se han analizado las concentraciones mínimas inhibitorias (CMIs) de tres quinolonas diferentes en mutantes procedentes de varias colecciones de cultivos tipo de Escherichia coli. Resultados. Mutantes en recA, recBC, priA y lexA mostraron una disminución significativa de la CMI a todas las quinolonas. No se observaron cambios significativos en estirpes mutantes en los mecanismos de reparación por TLS y NER. Discusión. Estos datos indican que, en presencia de quinolonas, los mecanismos de RFR y la inducción de la respuesta SOS estarían implicados en la aparición de mecanismos de sensibilidad a quinolonas (AU)


Introduction. Quinolones are one of the types of antibiotics with higher resistance rates in the last years. At molecular level, quinolones block type II topoisomerases producing double strand breaks (DSBs). These DSBs could play a double role, as inductors of the quinolone bactericidal effects but also as mediators of the resistance and tolerance mechanisms. Material and methods. In this work we have studied the molecular pathways responsible for DSBs repair in the quinolone susceptibility: the stalled replication fork reversal (recombination-dependent) (RFR), the SOS response induction, the translesional DNA synthesis (TLS) and the nucleotide excision repair mechanisms (NER). For this reason, at the European University in Madrid, we analysed the minimal inhibitory concentration (MIC) to three different quinolones in Escherichia coli mutant strains coming from different type culture collections. Results. recA, recBC, priA and lexA mutants showed a significant reduction on the MIC values for all quinolones tested. No significant changes were observed on mutant strains for TLS and NER. Discussion. These data indicate that in the presence of quinolones, RFR mechanisms and the SOS response could be involved in the quinolone susceptibility (AU)


Asunto(s)
Reparación del ADN/genética , Escherichia coli/genética , ADN Bacteriano/genética , Quinolonas/farmacocinética , Pruebas de Sensibilidad Microbiana , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico
3.
Curr Drug Metab ; 15(2): 182-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24694232

RESUMEN

Cyclooxygenases (prostaglandin-endoperoxide synthases, (EC 1.14.99.1) 1 and 2 (COX-1 and COX-2)) are key enzymes with a highly functional and pharmacological relevance. Genetic variations in the corresponding genes PTGS1 and PTGS2 are related to diverse human disorders and adverse drug reactions. Although COX-2 is highly inducible, most genetic association studies have focused on coding region gene variants. The aim of this study is to analyze the genetic variants modifying transcription factor binding sites in human PTGS genes based on the combined use of bioinformatics with 1,000 genomes data and replication by next generation sequencing. Updated information on gene sequences and variants was obtained from the 1,000 genomes website and from a replication sequencing study. Of the 570 upstream PTGS1 gene variants, 43 altered binding sites, either by disrupting existing sequences or by creating new binding sites. The most relevant are the SNP rs72769722, which creates a new binding site for NFKB, and the SNPs rs73559017 and rs76403914, both disrupting binding sites for CDX1. Of the 682 upstream PTGS2 gene variants, 31 altered binding sites, the most relevant being rs689466 and rs20417, which disrupt binding sequences for MYB and E2F, respectively; rs689462 which creates a new binding site for POU3F2; and a haplotype combining the SNPs rs34984585+rs10911904, which creates a new binding site for SRY. This study provides a detailed catalog of variant and invariant transcription factor binding sites for PTGS genes and related haplotypes. This information can be useful to identify potential genetic targets for studies related to COX enzymes.


Asunto(s)
Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Variación Genética , Genoma , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple
4.
J Bacteriol ; 188(23): 8294-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16980453

RESUMEN

An upshift of 10 degrees C or more in the growth temperature of an Escherichia coli culture causes induction of extra rounds of chromosome replication. This stress replication initiates at oriC but has functional requirements different from those of cyclic replication. We named this phenomenon heat-induced replication (HIR). Analysis of HIR in bacterial strains that had complete or partial oriC deletions and were suppressed by F integration showed that no sequence outside oriC is used for HIR. Analysis of a number of oriC mutants showed that deletion of the L-13-mer, which makes oriC inactive for cyclic replication, was the only mutation studied that inactivated HIR. The requirement for this sequence was strictly correlated with Benham's theoretical stress-induced DNA duplex destabilization. oriC mutations at DnaA, FIS, or IHF binding sites showed normal HIR activation, but DnaA was required for HIR. We suggest that strand opening for HIR initiation occurs due to heat-induced destabilization of the L-13-mer, and the stable oligomeric DnaA-single-stranded oriC complex might be required only to load the replicative helicase DnaB.


Asunto(s)
Proteínas Bacterianas/fisiología , Cromosomas Bacterianos/genética , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Escherichia coli K12/fisiología , Regulación Bacteriana de la Expresión Génica , Complejo de Reconocimiento del Origen/fisiología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Escherichia coli K12/genética , Calor , Complejo de Reconocimiento del Origen/genética , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA