Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Appl Microbiol Biotechnol ; 107(18): 5627-5634, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37486352

RESUMEN

Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH4) is a green-house gas whose concentrations in the atmosphere are on the rise. CH4 measurement is important for both the environment and the safety at the industrial and household level. Methanotrophs are distinguished for their unique characteristic of using CH4 as the sole source of carbon and energy, due to the presence of the methane monooxygenases that oxidize CH4 under ambient temperature conditions. This has attracted interest in the use of methanotrophs in biotechnological applications as well as in the development of biosensing systems for CH4 quantification and monitoring. Biosensing systems using methanotrophs rely on the use of whole microbial cells that oxidize CH4 in presence of O2, so that the CH4 concentration is determined in an indirect manner by measuring the decrease of O2 level in the system. Although several biological properties of methanotrophic microorganisms still need to be characterized, different studies have demonstrated the feasibility of the use of methanotrophs in CH4 measurement. This review summarizes the contributions in methane biosensing systems and presents a prospective of the valid use of methanotrophs in this field. KEY POINTS: • Methanotroph environmental relevance in methane oxidation • Methanotroph biotechnological application in the field of biosensing • Methane monooxygenase as a feasible biorecognition element in biosensors.


Asunto(s)
Gases , Metano , Oxidación-Reducción , Biotecnología , Cambio Climático , Microbiología del Suelo
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498843

RESUMEN

Staphylococcus aureus implant-associated infections are difficult to treat because of the ability of bacteria to form biofilm on medical devices. Here, the efficacy of Sb-1 to control or prevent S. aureus colonization on medical foreign bodies was investigated in a Galleria mellonella larval infection model. For colonization control assays, sterile K-wires were implanted into larva prolegs. After 2 days, larvae were infected with methicillin-resistant S. aureus ATCC 43300 and incubated at 37 °C for a further 2 days, when treatments with either daptomycin (4 mg/kg), Sb-1 (107 PFUs) or a combination of them (3 x/day) were started. For biofilm prevention assays, larvae were pre-treated with either vancomycin (10 mg/kg) or Sb-1 (107 PFUs) before the S. aureus infection. In both experimental settings, K-wires were explanted for colony counting two days after treatment. In comparison to the untreated control, more than a 4 log10 CFU and 1 log10 CFU reduction was observed on K-wires recovered from larvae treated with the Sb-1/daptomycin combination and with their singular administration, respectively. Moreover, pre-infection treatment with Sb-1 was found to prevent K-wire colonization, similarly to vancomycin. Taken together, the obtained results demonstrated the strong potential of the Sb-1 antibiotic combinatory administration or the Sb-1 pretreatment to control or prevent S. aureus-associated implant infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Mariposas Nocturnas , Infecciones Estafilocócicas , Animales , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Mariposas Nocturnas/microbiología , Larva/microbiología , Pruebas de Sensibilidad Microbiana
3.
Biosensors (Basel) ; 12(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291031

RESUMEN

Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.


Asunto(s)
Técnicas Biosensibles , Sepsis , Humanos , Técnicas Biosensibles/métodos , Sepsis/diagnóstico , Diagnóstico Precoz , Biomarcadores , Sistemas de Atención de Punto
4.
Sci Rep ; 12(1): 2875, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190600

RESUMEN

Recent studies indicate the existence of a complex microbiome in the meconium of newborns that plays a key role in regulating many host health-related conditions. However, a high variability between studies has been observed so far. In the present study, the meconium microbiome composition and the predicted microbial metabolic pathways were analysed in a consecutive cohort of 96 full-term newborns. The effect of maternal epidemiological variables on meconium diversity was analysed using regression analysis and PERMANOVA. Meconium microbiome composition mainly included Proteobacteria (30.95%), Bacteroidetes (23.17%) and Firmicutes (17.13%), while for predicted metabolic pathways, the most abundant genes belonged to the class "metabolism". We observed a significant effect of maternal Rh factor on Shannon and Inverse Simpson indexes (p = 0.045 and p = 0.049 respectively) and a significant effect of delivery mode and maternal antibiotic exposure on Jaccard and Bray-Curtis dissimilarities (p = 0.001 and 0.002 respectively), while gestational age was associated with observed richness and Shannon indexes (p = 0.018 and 0.037 respectively), and Jaccard and Bray-Curtis dissimilarities (p = 0.014 and 0.013 respectively). The association involving maternal Rh phenotype suggests a role for host genetics in shaping meconium microbiome prior to the exposition to the most well-known environmental variables, which will influence microbiome maturation in the newborn.


Asunto(s)
Microbioma Gastrointestinal , Meconio/microbiología , Antibacterianos , Bacteroidetes , Estudios de Cohortes , Femenino , Firmicutes , Microbioma Gastrointestinal/fisiología , Edad Gestacional , Humanos , Recién Nacido , Exposición Materna , Meconio/metabolismo , Embarazo , Proteobacteria , Sistema del Grupo Sanguíneo Rh-Hr
5.
J Pharm Biomed Anal ; 204: 114268, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298471

RESUMEN

The rapid and selective identification in the clinical setting of pathogenic bacteria causing healthcare associated infections (HAIs) and in particular blood stream infections (BSIs) is a major challenge, as the number of people affected worldwide and the associated mortality are on the rise. In fact, traditional laboratory techniques such culture and polymerase chain reaction (PCR)-based methodologies are often associated to long turnaround times, which justify the pressing need for the development of rapid, specific and portable point of care devices. The recently discovered clustered regularly interspaced short palindromic repeat loci (CRISPR) and the new class of programmable endonuclease enzymes called CRISPR associated proteins (Cas) have revolutionised molecular diagnostics. The use of Cas proteins in optical and electrochemical biosensing devices has significantly improved the detection of nucleic acids in clinical samples. In this study, a CRISPR/Cas12a system was coupled with electrochemical impedance spectroscopy (EIS) measurements to develop a label-free biosensing assay for the detection of Escherichia coli and Staphylococcus aureus, two bacterial species commonly associated to BSI infections. The programmable Cas12a endonuclease activity, induced by a specific guide RNA (gRNA), and the triggered collateral activity were assessed in in vitro restriction analyses, and evaluated thanks to impedance measurements using a modified gold electrode. The Cas12a/gRNA system was able to specifically recognize amplicons from different clinical isolates of E. coli and S. aureus with a limit of detection of 3 nM and a short turnaround time approximately of 1.5 h. To the best of our knowledge, this is the first biosensing device based on CRISPR/Cas12a label free impedance assay.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Bacteriano/genética , Impedancia Eléctrica , Escherichia coli/genética , Humanos , Staphylococcus aureus/genética
6.
J Fungi (Basel) ; 7(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200514

RESUMEN

An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review "draws a line" on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex-host interaction, and how far we are from defining potential novel targets or therapeutic strategies-key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.

7.
J Pharm Biomed Anal ; 192: 113645, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33039910

RESUMEN

A main challenge in the development of biosensing devices for the identification and quantification of nucleic acids is to avoid the amplification of the genetic material from the sample by polymerase chain reaction (PCR), which is at present necessary to enhance sensitivity and selectivity of assays. PCR has undoubtedly revolutionized genetic analyses, but it requires careful purification procedures that are not easily implemented in point of care (POC) devices. In recent years, a new strategy for nucleic acid detection based on clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein systems (Cas) seems to offer unprecedented possibilities. The coupling of the CRISPR/Cas system with recent isothermal amplification methods is fostering the development of innovative optical and electrochemical POC devices. In this review, the mechanisms of action of several new CRISRP/Cas systems are reported together with their use in biosensing of nucleic acids.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Ácidos Nucleicos/genética , Sistemas de Atención de Punto
8.
J Fungi (Basel) ; 6(2)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545584

RESUMEN

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.

9.
Nat Commun ; 11(1): 684, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019932

RESUMEN

Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted "modern" lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact "ancestral" lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success.


Asunto(s)
Evolución Molecular , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Animales , Cobayas , Humanos , Ratones , Ratones Endogámicos C3H , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/patogenicidad , Filogenia , Eliminación de Secuencia , Virulencia
10.
Microbiol Res ; 231: 126351, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31707298

RESUMEN

The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated. The present project was aimed at investigating the contribution of C. parapsilosis Als proteins by generating edited strains lacking functional Als proteins. CPAR2_404770 and CPAR2_404780, further indicated as CpALS4770 and CpALS4780, were selected for the generation of single and double edited strains using an episomal CRISPR/Cas9 technology. Phenotypic characterization of mutant strains revealed that editing of both genes had no impact on the in vitro growth of C. parapsilosis or on morphogenesis. Notably, CpALS4770-edited strain showed a reduction of biofilm formation and adhesive properties to human buccal cells (HBECs). Conversely, single CpALS4780-edited strain did not show any difference compared to the wild-type strain in all the assays performed, while the double CpALS4770-CpALS4780 mutant revealed an increased ability to produce biofilm, a hyper-adhesive phenotype to HBECs, and a marked tendency to form cellular aggregates. Murine vaginal infection experiments indicated a significant reduction in CFUs recovered from BALC/c mice infected with single and double edited strains, compared to those infected with the wild-type strain. These finding clearly indicate that CpAls4770 plays a role in adhesion to biotic and abiotic surfaces, while both CpALS4770 and CpALS4780 genes are required for C. parapsilosis ability to colonize and persist in the vaginal mucosa.


Asunto(s)
Candida parapsilosis , Adhesión Celular/genética , Virulencia/genética , Animales , Biopelículas/crecimiento & desarrollo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Candida parapsilosis/genética , Candida parapsilosis/patogenicidad , Candidiasis , Técnicas de Cultivo de Célula , Femenino , Proteínas Fúngicas/genética , Silenciador del Gen , Genes Fúngicos , Humanos , Ratones , Membrana Mucosa/microbiología
11.
Future Microbiol ; 14: 1383-1396, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659913

RESUMEN

Aim: In this study, the CRISPR gene-editing approach was used to simultaneously inactivate all three members of the ALS gene family in the opportunistic pathogen Candida orthopsilosis. Materials & methods: Using a single gRNA and repair template, CRISPR-edited clones were successfully generated in a one-step process in both C. orthopsilosis reference and clinical strains. Results: The phenotypic characterization of the ALS triple-edited strains revealed no impact on growth in liquid or solid media. However, pseudohyphal formation and the ability to adhere to human buccal epithelial cells were significantly decreased in triple-edited clones. Conclusion: Our CRISPR/Cas9 system is a powerful tool for simultaneous editing of fungal gene families, which greatly accelerates the generation of multiple gene-edited Candida strains. Data deposition: Nucleotide sequence data are available in the GenBank databases under the accession numbers MK875971, MK875972, MK875973, MK875974, MK875975, MK875976, MK875977.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Candida parapsilosis/genética , Edición Génica/métodos , Genes Fúngicos , Secuencia de Bases , Candida parapsilosis/crecimiento & desarrollo , Candidiasis/microbiología , Adhesión Celular , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Hifa/crecimiento & desarrollo , Boca/citología , Familia de Multigenes , ARN Guía de Kinetoplastida/genética
12.
PLoS One ; 14(4): e0215912, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31017950

RESUMEN

Agglutinin like sequence (Als) cell-wall proteins play a key role in adhesion and virulence of Candida species. Compared to the well-characterized Candida albicans ALS genes, little is known about ALS genes in the Candida parapsilosis species complex. Three incomplete ALS genes were identified in the genome sequence for Candida orthopsilosis strain 90-125 (GenBank assembly ASM31587v1): CORT0C04210 (named CoALS4210), CORT0C04220 (CoALS4220) and CORT0B00800 (CoALS800). To complete the gene sequences, new data were derived from strain 90-125 using Illumina (short-read) and Oxford Nanopore (long-read) methods. Long-read sequencing analysis confirmed the presence of 3 ALS genes in C. orthopsilosis 90-125 and resolved the gaps located in repetitive regions of CoALS800 and CoALS4220. In the new genome assembly (GenBank PQBP00000000), the CoALS4210 sequence was slightly longer than in the original assembly. C. orthopsilosis Als proteins encoded features well-known in C. albicans Als proteins such as a secretory signal peptide, N-terminal domain with a peptide-binding cavity, amyloid-forming region, repeated sequences, and a C-terminal site for glycosylphosphatidylinositol anchor addition that, in yeast, suggest localization of the proteins in the cell wall. CoAls4210 and CoAls800 lacked the classic C. albicans Als tandem repeats, instead featuring short, imperfect repeats with consensus motifs such as SSSEPP and GSGN. Quantitative RT-PCR showed differential regulation of CoALS genes by growth stage in six genetically diverse C. orthopsilosis clinical isolates, which also exhibited length variation in the ALS alleles, and strain-specific gene expression patterns. Overall, long-read DNA sequencing methodology was instrumental in generating an accurate assembly of CoALS genes, thus revealing their unconventional features and first insights into their allelic variability within C. orthopsilosis clinical isolates.


Asunto(s)
Aglutininas/genética , Candida parapsilosis/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Alelos , Secuencia de Bases , Candida parapsilosis/crecimiento & desarrollo , Cromosomas Fúngicos/genética , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Dominios Proteicos
13.
Fungal Genet Biol ; 120: 19-29, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30205198

RESUMEN

Candida orthopsilosis is a human fungal pathogen belonging to the Candida parapsilosis sensu lato species complex. C. orthopsilosis annotated genome harbors 3 putative agglutinin-like sequence (ALS) genes named CORT0B00800, CORT0C04210 and CORT0C04220. The aim of this study was to investigate the role played by CORT0C04210 (CoALS4210) in the virulence and pathogenicity of this opportunistic yeast. Heterozygous and null mutant strains lacking one or both copies of CoALS4210 were obtained using the SAT1-flipper cassette strategy and were characterized in in vitro, ex vivo and in vivo models. While no differences between the mutant and the wild-type strains were observed in in vitro growth or in the ability to undergo morphogenesis, the CoALS4210 null mutant showed an impaired adhesion to human buccal epithelial cells compared to heterozygous and wild type strains. When the pathogenicity of CoALS4210 mutant and wild type strains was evaluated in a murine model of systemic candidiasis, no statistically significant differences were observed in fungal burden of target organs. Since gene disruption could alter chromatin structure and influence transcriptional regulation of other genes, two independent CRISPR/Cas9 edited mutant strains were generated in the same genetic background used to create the deleted strains. CoALS4210-edited strains were tested for their in vitro growing ability, and compared with the deleted strain for adhesion ability to human buccal epithelial cells. The results obtained confirmed a reduction in the adhesion ability of C. orthopsilosis edited strains to buccal cells. These findings provide the first evidence that CRISPR/Cas9 can be successfully used in C. orthopsilosis and demonstrate that CoALS4210 plays a direct role in the adhesion of C. orthopsilosis to human buccal cells but is not primarily involved in the onset of disseminated candidiasis.


Asunto(s)
Candida parapsilosis/genética , Genes Fúngicos , Mucosa Bucal/microbiología , Animales , Sistemas CRISPR-Cas , Candida parapsilosis/crecimiento & desarrollo , Candida parapsilosis/patogenicidad , Candidiasis/microbiología , Adhesión Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mutagénesis , Virulencia/genética
14.
PLoS Pathog ; 14(6): e1007139, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912964

RESUMEN

Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/inmunología , Proteínas de la Membrana/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Proteínas Bacterianas/genética , Femenino , Genoma Bacteriano , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Familia de Multigenes , Tuberculosis/prevención & control , Virulencia
15.
Cell Rep ; 23(4): 1072-1084, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694886

RESUMEN

The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs) of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Epítopos de Linfocito T/inmunología , Granuloma del Sistema Respiratorio , Mycobacterium tuberculosis/inmunología , Fagocitos , Tuberculosis Pulmonar , Animales , Línea Celular Tumoral , Granuloma del Sistema Respiratorio/inmunología , Granuloma del Sistema Respiratorio/microbiología , Granuloma del Sistema Respiratorio/patología , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitos/patología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología
16.
J Antimicrob Chemother ; 73(7): 1815-1822, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635519

RESUMEN

Background: Candida orthopsilosis is a human fungal pathogen responsible for a wide spectrum of symptomatic infections. Evidence suggests that C. orthopsilosis is mainly susceptible to azoles, the most extensively used antifungals for treatment of these infections. However, fluconazole-resistant clinical isolates are reported. Objectives: This study evaluated the contribution of a single amino acid substitution in the azole target CoErg11 to the development of azole resistance in C. orthopsilosis. Methods: C. orthopsilosis clinical isolates (n = 40) were tested for their susceptibility to azoles and their CoERG11 genes were sequenced. We used a SAT1 flipper-driven transformation to integrate a mutated CoERG11 allele in the genetic background of a fluconazole-susceptible isolate. Results: Susceptibility testing revealed that 16 of 40 C. orthopsilosis clinical isolates were resistant to fluconazole and to at least one other azole. We identified an A395T mutation in the CoERG11 coding sequence of azole-resistant isolates only that resulted in the non-synonymous amino acid substitution Y132F. The SAT1 flipper cassette strategy led to the creation of C. orthopsilosis mutants that carried the A395T mutation in one or both CoERG11 alleles (heterozygous or homozygous mutant, respectively) in an azole-susceptible genetic background. We tested mutant strains for azole susceptibility and for hot-spot locus heterozygosity. Both the heterozygous and the homozygous mutant strains exhibited an azole-resistant phenotype. Conclusions: To the best of our knowledge, these findings provide the first evidence that the CoErg11 Y132F substitution confers multi-azole resistance in C. orthopsilosis.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Azoles/uso terapéutico , Candidiasis/microbiología , Fluconazol/farmacología , Fluconazol/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación
17.
Front Microbiol ; 8: 2218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29180990

RESUMEN

Candida parapsilosis is a major cause of hospital-acquired infection, often related to parenteral nutrition administered via catheters and hand colonization of health care workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate of 30% points to the pressing need for new antifungal drugs. The present study aimed at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11 anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic activity, and observation of sessile cell morphology on polystyrene microtiter plates and using an in vitro model of catheter-associated C. parapsilosis biofilm production. Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production upon peptide exposure were evaluated by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a statistically significant dose-dependent reduction of preformed-biofilm cellular density and metabolic activity at high peptide concentrations only. Interestingly, when assessed in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was used as experimental condition on both early and preformed C. parapsilosis biofilm. Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key biofilm related genes. The overall findings suggest hLF 1-11 as a promising candidate for the prevention of C. parapsilosis biofilm formation and to treatment of mature catheter-related C. parapsilosis biofilm formation.

18.
Curr Top Microbiol Immunol ; 404: 235-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26847354

RESUMEN

Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms.


Asunto(s)
Bacterias Grampositivas/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Bacterias Grampositivas/patogenicidad , Familia de Multigenes , Virulencia
19.
PLoS Pathog ; 12(7): e1005770, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467705

RESUMEN

Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Reacciones Cruzadas , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Células TH1
20.
Mol Ther ; 24(2): 201-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26906614
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...