Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38826003

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Electromyography , Lower Extremity , Muscle, Skeletal , Plyometric Exercise , Humans , Male , Plyometric Exercise/methods , Lower Extremity/physiology , Young Adult , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Muscle Strength/physiology
3.
J Neurophysiol ; 131(6): 1126-1142, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38629162

The central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing. In this study, participants coactivated the same pair of upper-limb muscles, i.e., the biceps brachii and the triceps brachii, to perform two functionally different tasks: limb stiffness modulation or endpoint force generation. Spike trains of MNs were identified through decomposition of high-density electromyograms (EMGs) collected from the two muscles. Cross-correlogram showed a higher synchronization between MNs recruited to modulate stiffness, whereas cross-muscle coherence analysis revealed peaks in the ß-band, which is commonly ascribed to a cortical origin. These peaks did not appear during the coactivation for force generation, thus suggesting separate cortical inputs for stiffness modulation. Moreover, a within-muscle coherence analysis identified two subsets of MNs that were selectively recruited to generate force or regulate stiffness. This study is the first to highlight different characteristics, and probable different neural origins, of the synaptic inputs driving a pair of muscles under different functional conditions. We suggest that stiffness modulation is driven by cortical inputs that project to a separate set of MNs, supporting the existence of a separate pathway underlying the control of stiffness.NEW & NOTEWORTHY The characterization of the pathways underlying force generation or stiffness modulation are still unknown. In this study, we demonstrated that the common input to motor neurons of antagonist muscles shows a high-frequency component when muscles are coactivated to modulate stiffness but not to generate force. Our results provide novel insights on the neural strategies for the recruitment of multiple muscles by identifying specific spectral characteristics of the synaptic inputs underlying functionally different tasks.


Motor Neurons , Muscle, Skeletal , Muscle, Skeletal/physiology , Motor Neurons/physiology , Humans , Male , Adult , Female , Electromyography , Muscle Contraction/physiology , Young Adult , Synapses/physiology
4.
Endosc Int Open ; 12(3): E419-E427, 2024 Mar.
Article En | MEDLINE | ID: mdl-38504744

Background and study aims Musculoskeletal disorders (MSDs) and injuries (MSIs) are frequent in gastrointestinal endoscopy. The aim of this study was to assess potential ergonomic advantages of a lighter single-use duodenoscope compared with a standard reusable one for endoscopists performing endoscopic retrograde cholangiopancreatography (ERCP). Methods Three experienced endoscopists performed an ergonomic, preclinical, comparative protocol-guided simulation study of a single-use and a standard reusable duodenoscope using an anatomic bench model. Surface EMG signals from left forearm and arm muscles were recorded. A commercial inertial sensor-based motion capture system was applied to record body posture as well. Results A significant lowering of root mean square amplitude and amplitude distribution of biceps brachii signal (ranging from 13% to 42%) was recorded in all the participants when using a single-use duodenoscope compared with a reusable one. An overall reduction of muscle activation amplitude and duration was also associated with the single-use duodenoscope for forearm muscles, with different behaviors among subjects. Participants spent most of the time in wrist extension (> 80%) and ulnar deviation (> 65%). A consistent pattern of functional range of motion employed for completing all procedures was observed. Conclusions Our study showed that a lighter scope has a promising effect in reducing upper arm muscle activity during ERCP with potential benefit on musculoskeletal health in the ERCP setting.

5.
J Neurophysiol ; 131(1): 28-37, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37964731

Proprioception refers to the ability to perceive the position and movement of body segments in space. The cortical aspects of the proprioceptive afference from the body can be investigated using corticokinematic coherence (CKC). CKC accurately quantifies the degree of coupling between cortical activity and limb kinematics, especially if precise proprioceptive stimulation of evoked movements is used. However, there is no evidence on how volitional muscle activation during proprioceptive stimulation affects CKC strength. Twenty-five healthy volunteers (28.8 ± 7 yr, 11 females) participated in the experiment, which included electroencephalographic (EEG), electromyographic (EMG), and kinematic recordings. Ankle-joint rotations (2-Hz) were elicited through a movement actuator in two conditions: passive condition with relaxed ankle and active condition with constant 5-Nm plantar flexion exerted during the stimulation. In total, 6 min of data were recorded per condition. CKC strength was defined as the maximum coherence value among all the EEG channels at the 2-Hz movement frequency for each condition separately. Both conditions resulted in significant CKC peaking at the Cz electrode over the foot area of the primary sensorimotor (SM1) cortex. Stronger CKC was found for the active (0.13 ± 0.14) than the passive (0.03 ± 0.04) condition (P < 0.01). The results indicated that volitional activation of the muscles intensifies the neuronal proprioceptive processing in the SM1 cortex. This finding could be explained both by peripheral sensitization of the ankle joint proprioceptors and central modulation of the neuronal proprioceptive processing at the spinal and cortical levels.NEW & NOTEWORTHY The current study is the first to investigate the effect of volitional muscle activation on CKC-based assessment of cortical proprioception of the ankle joint. Results show that the motor efference intensifies the neuronal processing of proprioceptive afference of the ankle joint. This is a significant finding as it may extend the use of CKC method during active tasks to further evaluate the motor efference-proprioceptive afference relationship and the related adaptations to exercise, rehabilitation, and disease.


Magnetoencephalography , Sensorimotor Cortex , Female , Humans , Magnetoencephalography/methods , Sensorimotor Cortex/physiology , Proprioception/physiology , Movement/physiology , Electroencephalography , Muscles
6.
Article En | MEDLINE | ID: mdl-37844006

The value of surface electromyograms (EMGs) lies in their potential to non-invasively probe the neuromuscular system. Whether muscle excitation may be accurately inferred from bipolar EMGs depends on how much the detected signal is both sensitive and specific to the excitation of the target muscle. While both are known to be a function of the inter-electrode distance (IED), specificity has been of long concern in the physiological literature. In contrast, sensitivity, at best, has been implicitly assumed. Here we provide evidence that the IED imposes a biophysical constraint on the sensitivity of surface EMG. From 20 healthy subjects, we tested the hypothesis that excessively reducing the IED limits EMGs' physiological content. We detected bipolar EMGs with IEDs varying from 5 mm to 50 mm from two skeletal muscles with distinct architectures, gastrocnemius and biceps brachii. Non-parametric statistics and Bayesian hierarchical modelling were used to evaluate the dependence of the onset of muscle excitation and signal-to-noise ratio (SNR) on the IED. Experimental results revealed that IED critically affects the sensitivity of bipolar EMGs for both muscles-indeliberately reducing the IED yields EMGs that are not representative of the whole muscle, hampering validity. Simulation results substantiate the generalization of experimental results to small and large electrodes. Based on current and previous findings, we discuss a potentially valid procedure for defining the most appropriate IED for a single bipolar, surface recording-i.e., the distance from the electrode to the target muscle boundary may heuristically serve as a lower bound when choosing an IED.


Muscle Contraction , Muscle, Skeletal , Humans , Electromyography/methods , Bayes Theorem , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Electrodes
7.
J Neural Eng ; 20(4)2023 07 26.
Article En | MEDLINE | ID: mdl-37437598

Objective.Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences requires decomposing a velocity field into components, each consisting of an image and a signal. These components can be associated with putative MU activity or spurious movements (noise). The differentiation between putative MUs and noise has been accomplished by comparing the signals with MU firings obtained from needle electromyography (EMG). Here, we examined whether the repeatability of the images over brief time intervals can serve as a criterion for distinguishing putative MUs from noise in low-force isometric contractions.Approach.UUS images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-based components. For each contraction, velocity sequences from the same eight-second ultrasound recording were separated into consecutive two-second epochs and decomposed. To evaluate the repeatability of components' images across epochs, we calculated the Jaccard similarity coefficient (JSC). JSC compares the similarity between two images providing values between 0 and 1. Finally, the association between the components and the MUs from HDsEMG was assessed.Main results.All the MU-matched components had JSC > 0.38, indicating they were repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8 ± 1.6 matches over 4.9 ± 1.8 MUs). The repeatable components (JSC > 0.38) represented 14% of the total components (6.5 ± 3.3 components). These findings align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from noise and can be used for data reduction.Significance.This study provides the foundation for developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging of MUs. These methods are relevant for studying muscle neuromechanics and designing novel neural interfaces.


Isometric Contraction , Muscle, Skeletal , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Electromyography/methods , Arm , Healthy Volunteers , Muscle Contraction/physiology
8.
Front Physiol ; 14: 1098225, 2023.
Article En | MEDLINE | ID: mdl-36923291

Surface electromyography (sEMG) is a signal consisting of different motor unit action potential trains and records from the surface of the muscles. One of the applications of sEMG is the estimation of muscle force. We proposed a new real-time convex and interpretable model for solving the sEMG-force estimation. We validated it on the upper limb during isometric voluntary flexions-extensions at 30%, 50%, and 70% Maximum Voluntary Contraction in five subjects, and lower limbs during standing tasks in thirty-three volunteers, without a history of neuromuscular disorders. Moreover, the performance of the proposed method was statistically compared with that of the state-of-the-art (13 methods, including linear-in-the-parameter models, Artificial Neural Networks and Supported Vector Machines, and non-linear models). The envelope of the sEMG signals was estimated, and the representative envelope of each muscle was used in our analysis. The convex form of an exponential EMG-force model was derived, and each muscle's coefficient was estimated using the Least Square method. The goodness-of-fit indices, the residual signal analysis (bias and Bland-Altman plot), and the running time analysis were provided. For the entire model, 30% of the data was used for estimation, while the remaining 20% and 50% were used for validation and testing, respectively. The average R-square (%) of the proposed method was 96.77 ± 1.67 [94.38, 98.06] for the test sets of the upper limb and 91.08 ± 6.84 [62.22, 96.62] for the lower-limb dataset (MEAN ± SD [min, max]). The proposed method was not significantly different from the recorded force signal (p-value = 0.610); that was not the case for the other tested models. The proposed method significantly outperformed the other methods (adj. p-value < 0.05). The average running time of each 250 ms signal of the training and testing of the proposed method was 25.7 ± 4.0 [22.3, 40.8] and 11.0 ± 2.9 [4.7, 17.8] in microseconds for the entire dataset. The proposed convex model is thus a promising method for estimating the force from the joints of the upper and lower limbs, with applications in load sharing, robotics, rehabilitation, and prosthesis control for the upper and lower limbs.

9.
Hum Factors ; 65(7): 1491-1505, 2023 11.
Article En | MEDLINE | ID: mdl-34875887

OBJECTIVE: The effects of diverse periodic interventions on trapezius muscle fatigue and activity during a full day of computer work were investigated. BACKGROUND: Musculoskeletal disorders, including trapezius myalgia, may be associated with repeated exposure to prolonged low-level activity, even during light upper-extremity tasks including computer work. METHODS: Thirty healthy adults participated in a study that simulated two 6-hour workdays of computer work. One workday involved imposed periodic passive and active interventions aimed at disrupting trapezius contraction monotony (Intervention day), whereas the other workday did not (Control day). Trapezius muscle activity was quantified by the 3-dimensional acceleration of the jolt movement of the acromion produced by electrically induced muscle twitches. The spatio-temporal distribution of trapezius activity was measured through high-density surface electromyography (HD-EMG). RESULTS: The twitch acceleration magnitude in one direction was significantly different across measurement periods (p = 0.0156) on Control day, whereas no significant differences in any direction were observed (p > 0.05) on Intervention day. The HD-EMG from Intervention day showed that only significant voluntary muscle contractions (swing arms, Jacobson maneuver) induced a decrease in the muscle activation time and an increase in the spatial muscle activation areas (p < 0.01). CONCLUSION: Disruption of trapezius monotonous activity via brief voluntary contractions effectively modified the ensuing contraction pattern (twitch acceleration along one axis, active epochs reduction, and larger spatial distribution). The observed changes support an associated reduction of muscle fatigue. APPLICATION: This study suggests that disruptive intervention activity is efficient in reducing the impact of trapezius muscle fatigue.


Muscle, Skeletal , Superficial Back Muscles , Adult , Humans , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Electromyography/methods , Muscle Contraction/physiology , Upper Extremity
10.
J Appl Physiol (1985) ; 133(5): 1136-1148, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36227169

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0° or 30° plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (∼75 ms) was smaller than CST-torque (∼150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified.NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.


Isometric Contraction , Patient Discharge , Humans , Isometric Contraction/physiology , Recruitment, Neurophysiological/physiology , Muscle Contraction/physiology , Torque , Electromyography , Muscle, Skeletal/physiology
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 748-751, 2022 07.
Article En | MEDLINE | ID: mdl-36086608

Muscle force production is the result of a sequence of electromechanical events that translate the neural drive issued to the motor units (MUs) into tensile forces on the tendon. Current technology allows this phenomenon to be investigated non-invasively. Single MU excitation and its mechanical response can be studied through high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) imaging respectively. In this study, we propose a method to integrate these two techniques to identify anatomical characteristics of single MUs. Specifically, we tested two algorithms, combining the tissue velocity sequence (TVS, obtained from ultrafast US images), and the MU firings (extracted from HDsEMG decomposition). The first is the Spike Triggered Averaging (STA) of the TVS based on the occurrences of individual MU firings, while the second relies on the correlation between the MU firing patterns and the TVS spatio-temporal independent components (STICA). A simulation model of the muscle contraction was adapted to test the algorithms at different degrees of neural excitation (number of active MUs) and MU synchronization. The performances of the two algorithms were quantified through the comparison between the simulated and the estimated characteristics of MU territories (size, location). Results show that both approaches are negatively affected by the number of active MU and synchronization levels. However, STICA provides a more robust MU territory estimation, outperforming STA in all the tested conditions. Our results suggest that spatio-temporal independent component decomposition of TVS is a suitable approach for anatomical and mechanical characterization of single MUs using a combined HDsEMG and ultrafast US approach.


Motor Neurons , Muscle Contraction , Computer Simulation , Electromyography/methods , Motor Neurons/physiology , Muscle Contraction/physiology , Ultrasonography
12.
Sci Rep ; 12(1): 8855, 2022 05 25.
Article En | MEDLINE | ID: mdl-35614312

Electromyography and ultrasonography provide complementary information about electrophysiological and physical (i.e. anatomical and mechanical) muscle properties. In this study, we propose a method to assess the electrical and physical properties of single motor units (MUs) by combining High-Density surface Electromyography (HDsEMG) and ultrafast ultrasonography (US). Individual MU firings extracted from HDsEMG were used to identify the corresponding region of muscle tissue displacement in US videos. The time evolution of the tissue velocity in the identified region was regarded as the MU tissue displacement velocity. The method was tested in simulated conditions and applied to experimental signals to study the local association between the amplitude distribution of single MU action potentials and the identified displacement area. We were able to identify the location of simulated MUs in the muscle cross-section within a 2 mm error and to reconstruct the simulated MU displacement velocity (cc > 0.85). Multiple regression analysis of 180 experimental MUs detected during isometric contractions of the biceps brachii revealed a significant association between the identified location of MU displacement areas and the centroid of the EMG amplitude distribution. The proposed approach has the potential to enable non-invasive assessment of the electrical, anatomical, and mechanical properties of single MUs in voluntary contractions.


Isometric Contraction , Motor Neurons , Action Potentials/physiology , Electromyography/methods , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Ultrasonography
13.
J Clin Med ; 11(3)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35160054

The aims of this study were to investigate age-related changes in total body skeletal muscle mass (TBSMM) and the between-limb asymmetry in lean mass in a large sample of adults. Demographic, anthropometric, and DXA-derived data of National Health and Nutrition Examination Survey participants were considered. The sample included 10,014 participants of two ethnic groups (Caucasians and African Americans). The age-related decline of TBSMM absolute values was between 5% and 6% per decade in males and between 4.5% and 5.0% per decade in females. The adjustment of TBSMM for body surface area (TB-MAXI) showed that muscle mass peaked in the second decade and decreased progressively during the subsequent decades. The following thresholds were identified to distinguish between low and normal TB-MAXI: (i) 10.0 kg/m2 and 11.0 kg/m2 in Caucasian and African American females; and (ii) 12.5 kg/m2 and 14.5 kg/m2 in Caucasian and African American males. The lean asymmetry indices were higher for the lower limbs compared with the upper limbs and were higher for males compared with females. In conclusion, the present study proposes the TB-MAXI and lean asymmetry index, which can be used (and included in DXA reports) as clinically relevant markers for muscle amount and lean distribution.

14.
Eur J Appl Physiol ; 122(6): 1367-1381, 2022 Jun.
Article En | MEDLINE | ID: mdl-35226169

It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.


Endurance Training , Acclimatization , Action Potentials , Animals , Humans , Motor Neurons/physiology , Spine
15.
Article En | MEDLINE | ID: mdl-34398755

OBJECTIVE: Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. METHODS: We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. RESULTS: The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. CONCLUSIONS: An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. SIGNIFICANCE: The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary.


Textiles , Wearable Electronic Devices , Delivery of Health Care , Electrodes , Electromyography , Humans
16.
Article En | MEDLINE | ID: mdl-34097613

Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks.


Muscle, Skeletal , Textiles , Electrodes , Electromyography , Humans
17.
Exerc Sport Sci Rev ; 49(1): 23-34, 2021 01.
Article En | MEDLINE | ID: mdl-33044329

When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs.


Muscle Contraction , Muscle, Skeletal , Electrodes , Electromyography , Humans
18.
Physiol Meas ; 42(1): 015007, 2021 02 09.
Article En | MEDLINE | ID: mdl-32916668

OBJECTIVE: We recently documented that compound muscle action potentials (M waves) recorded over the 'pennate' vastus lateralis showed a sharp deflection (named as a shoulder) in the first phase. Here, we investigated whether such a shoulder was also present in M waves evoked in a muscle with different architecture, such as the biceps brachii, with the purpose of elucidating the electrical origin of such afeature. APPROACH: M waves evoked by maximal single shocks to the brachial plexus were recorded in monopolar and bipolar configurations from 72 individuals using large (10 mm diameter) electrodes and from eight individuals using small (1 mm diameter) electrodes arranged in a linear array. The changes in M-wave features at different locations along the muscle fiber direction were examined. MAIN RESULTS: The shoulder was recognizable in most (87%) monopolar M waves, whereas it was rarely observed (6%) in bipolar derivations. Recordings made along the fiber direction showed that the shoulder was a stationary (non-propagating) feature, with short duration (spiky), which had positive polarity at all locations along the fibers. The latency of the shoulder (9.5 ± 0.5 ms) was significantly shorter than the estimated time taken for the action potentials to reach the biceps tendon (12.8 ms). SIGNIFICANCE: The shoulder must be generated by a dipole source, i.e. a source created at a fixed anatomical position, although the exact origin of this dipole is uncertain. Our results suggest that the shoulder may not be due to the end-of-fiber signals formed at the biceps brachii tendon. The shoulder is not related to any specific arrangement of muscle fibers, as it has been observed in both pennate and fusiform muscles. Being a stationary (non-propagating) component, the shoulder is not reliable for studying changes in sarcolemmal excitability, and thus should be excluded from the M-wave analysis.


Muscle, Skeletal , Arm , Elbow , Electromyography , Humans , Muscle, Skeletal/physiology , Shoulder
19.
Front Neurol ; 11: 573616, 2020.
Article En | MEDLINE | ID: mdl-33123079

Historical, educational, and technical barriers have been reported to limit the use of surface electromyography (sEMG) in clinical neurorehabilitation settings. In an attempt to identify, review, rank, and interpret potential factors that may play a role in this scenario, we gathered information on (1) current use of sEMG and its clinical potential; (2) professional figures primarily dealing with sEMG; (3) educational aspects, and (4) possible barriers and reasons for its apparently limited use in neurorehabilitation. To this aim, an online 30-question survey was sent to 52 experts on sEMG from diverse standpoints, backgrounds, and countries. Participants were asked to respond to each question on a 5-point Likert scale or by ranking items. A cut-off of 75% agreement was chosen as the consensus threshold. Thirty-five invitees (67%) completed the electronic survey. Consensus was reached for 77% of the proposed questions encompassing current trends in sEMG use in neurorehabilitation, educational, technical, and methodological features as well as its translational utility for clinicians and patients. Data evidenced the clinical utility of sEMG for patient assessment, to define the intervention plan, and to complement/optimize other methods used to quantify muscle and physical function. The aggregate opinion of the interviewed experts confirmed that sEMG is more frequently employed in technical/methodological than clinical research. Moreover, the slow dissemination of research findings and the lack of education on sEMG seem to prevent prompt transfer into practice. The findings of the present survey may contribute to the ongoing debate on the appropriateness and value of sEMG for neurorehabilitation professionals and its potential translation into clinical settings.

20.
Med Eng Phys ; 85: 97-103, 2020 11.
Article En | MEDLINE | ID: mdl-33081969

Different devices for mechano-acoustic muscle vibration became available on the market in the last ten years. Although the use of these vibrators is increasing in research and clinical settings, the features of their stimulation output were never described in literature. In this study we aimed to quantify and compare the stimulation output of the four most widespread pneumatic devices for focal muscle vibration available on the market. A piezoelectric pressure sensor was used to measure the pressure profile generated by the four selected devices in the following experimental conditions: i) measurement of the output changes associated with variations of the stimulation amplitude for three stimulation frequencies (100 Hz, 200 Hz, and 300 Hz); ii) measurement of the output changes during a 20-min long stimulation at constant frequency (300 Hz) and amplitude; iii) measurement of the output changes associated with the progressive activation of all stimulation channels at constant frequency (200 Hz) for different amplitudes. The maximum peak-to-peak amplitudes of the pressure waves were in the range 102 mbar - 369 mbar (below the maximum values declared by the different manufacturers). The shape of the pressure waves generated by the four devices was quasi-sinusoidal and asymmetric with respect to the atmospheric pressure. All output features had a remarkable intra- and inter-device variability. Further studies are required to support the technological improvement of the currently available devices and to focus the issues of vibration effectiveness, limitations, proper protocols, modalities of its application and assessment in neuromuscular training and rehabilitation.


Muscle, Skeletal , Vibration , Humans , Physical Therapy Modalities
...