Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696599

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Amygdala , Magnetic Resonance Imaging , Visual Cortex , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Infant , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/growth & development , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Genetic Predisposition to Disease/genetics
2.
J Neurodev Disord ; 16(1): 12, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509470

BACKGROUND: Specifying early developmental differences among neurodevelopmental disorders with distinct etiologies is critical to improving early identification and tailored intervention during the first years of life. Recent studies have uncovered important differences between infants with fragile X syndrome (FXS) and infants with familial history of autism spectrum disorder who go on to develop autism themselves (FH-ASD), including differences in brain development and behavior. Thus far, there have been no studies longitudinally investigating differential developmental skill profiles in FXS and FH-ASD infants. METHODS: The current study contrasted longitudinal trajectories of verbal (expressive and receptive language) and nonverbal (gross and fine motor, visual reception) skills in FXS and FH-ASD infants, compared to FH infants who did not develop ASD (FH-nonASD) and typically developing controls. RESULTS: Infants with FXS showed delays on a nonverbal composite compared to FH-ASD (as well as FH-nonASD and control) infants as early as 6 months of age. By 12 months an ordinal pattern of scores was established between groups on all domains tested, such that controls > FH-nonASD > FH-ASD > FXS. This pattern persisted through 24 months. Cognitive level differentially influenced developmental trajectories for FXS and FH-ASD. CONCLUSIONS: Our results demonstrate detectable group differences by 6 months between FXS and FH-ASD as well as differential trajectories on each domain throughout infancy. This work further highlights an earlier onset of global cognitive delays in FXS and, conversely, a protracted period of more slowly emerging delays in FH-ASD. Divergent neural and cognitive development in infancy between FXS and FH-ASD contributes to our understanding of important distinctions in the development and behavioral phenotype of these two groups.


Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Infant , Humans , Fragile X Syndrome/complications , Fragile X Syndrome/psychology , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/psychology , Language , Cognition
3.
Dev Cogn Neurosci ; 65: 101333, 2024 Feb.
Article En | MEDLINE | ID: mdl-38154378

Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.


Autism Spectrum Disorder , Child , Infant , Infant, Newborn , Humans , Anxiety , Anxiety Disorders , Brain , Magnetic Resonance Imaging/methods , Amygdala
4.
JAMA Netw Open ; 6(12): e2348341, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38113043

Importance: Perivascular spaces (PVS) and cerebrospinal fluid (CSF) are essential components of the glymphatic system, regulating brain homeostasis and clearing neural waste throughout the lifespan. Enlarged PVS have been implicated in neurological disorders and sleep problems in adults, and excessive CSF volume has been reported in infants who develop autism. Enlarged PVS have not been sufficiently studied longitudinally in infancy or in relation to autism outcomes or CSF volume. Objective: To examine whether enlarged PVS are more prevalent in infants who develop autism compared with controls and whether they are associated with trajectories of extra-axial CSF volume (EA-CSF) and sleep problems in later childhood. Design, Setting, and Participants: This prospective, longitudinal cohort study used data from the Infant Brain Imaging Study. Magnetic resonance images were acquired at ages 6, 12, and 24 months (2007-2017), with sleep questionnaires performed between ages 7 and 12 years (starting in 2018). Data were collected at 4 sites in North Carolina, Missouri, Pennsylvania, and Washington. Data were analyzed from March 2021 through August 2022. Exposure: PVS (ie, fluid-filled channels that surround blood vessels in the brain) that are enlarged (ie, visible on magnetic resonance imaging). Main Outcomes and Measures: Outcomes of interest were enlarged PVS and EA-CSF volume from 6 to 24 months, autism diagnosis at 24 months, sleep problems between ages 7 and 12 years. Results: A total of 311 infants (197 [63.3%] male) were included: 47 infants at high familial likelihood for autism (ie, having an older sibling with autism) who were diagnosed with autism at age 24 months, 180 high likelihood infants not diagnosed with autism, and 84 low likelihood control infants not diagnosed with autism. Sleep measures at school-age were available for 109 participants. Of infants who developed autism, 21 (44.7%) had enlarged PVS at 24 months compared with 48 infants (26.7%) in the high likelihood but no autism diagnosis group (P = .02) and 22 infants in the control group (26.2%) (P = .03). Across all groups, enlarged PVS at 24 months was associated with greater EA-CSF volume from ages 6 to 24 months (ß = 4.64; 95% CI, 0.58-8.72; P = .002) and more frequent night wakings at school-age (F = 7.76; η2 = 0.08; P = .006). Conclusions and Relevance: These findings suggest that enlarged PVS emerged between ages 12 and 24 months in infants who developed autism. These results add to a growing body of evidence that, along with excessive CSF volume and sleep dysfunction, the glymphatic system could be dysregulated in infants who develop autism.


Autistic Disorder , Infant , Humans , Male , Child , Child, Preschool , Female , Autistic Disorder/diagnostic imaging , Longitudinal Studies , Prospective Studies , Brain/diagnostic imaging , Brain/pathology , Sleep
5.
Stem Cell Reports ; 18(7): 1389-1393, 2023 07 11.
Article En | MEDLINE | ID: mdl-37352851

Debates about the ethics of human brain organoids have proceeded without the input of individuals whose brains are being modeled. Interviews with donors of biospecimens for brain organoid research revealed overall enthusiasm for brain organoids as a tool for biomedical discovery, alongside a desire for ongoing engagement with research teams to learn the results of the research, to allow transfer of decision-making authority over time, and to ensure ethical boundaries are not crossed. Future work is needed to determine the most feasible and resource-efficient way to longitudinally engage donors participating in brain organoid research.


Biological Specimen Banks , Biomedical Research , Humans , Tissue Donors , Brain , Organoids , Informed Consent
6.
JAMA Netw Open ; 6(5): e2311543, 2023 05 01.
Article En | MEDLINE | ID: mdl-37140923

Importance: Children with autism and their siblings exhibit executive function (EF) deficits early in development, but associations between EF and biological sex or early brain alterations in this population are largely unexplored. Objective: To investigate the interaction of sex, autism likelihood group, and structural magnetic resonance imaging alterations on EF in 2-year-old children at high familial likelihood (HL) and low familial likelihood (LL) of autism, based on having an older sibling with autism or no family history of autism in first-degree relatives. Design, Setting, and Participants: This prospective cohort study assessed 165 toddlers at HL (n = 110) and LL (n = 55) of autism at 4 university-based research centers. Data were collected from January 1, 2007, to December 31, 2013, and analyzed between August 2021 and June 2022 as part of the Infant Brain Imaging Study. Main Outcomes and Measures: Direct assessments of EF and acquired structural magnetic resonance imaging were performed to determine frontal lobe, parietal lobe, and total cerebral brain volume. Results: A total of 165 toddlers (mean [SD] age, 24.61 [0.95] months; 90 [54%] male, 137 [83%] White) at HL for autism (n = 110; 17 diagnosed with ASD) and LL for autism (n = 55) were studied. The toddlers at HL for autism scored lower than the toddlers at LL for autism on EF tests regardless of sex (mean [SE] B = -8.77 [4.21]; 95% CI, -17.09 to -0.45; η2p = 0.03). With the exclusion of toddlers with autism, no group (HL vs LL) difference in EF was found in boys (mean [SE] difference, -7.18 [4.26]; 95% CI, 1.24-15.59), but EF was lower in HL girls than LL girls (mean [SE] difference, -9.75 [4.34]; 95% CI, -18.32 to -1.18). Brain-behavior associations were examined, controlling for overall cerebral volume and developmental level. Sex differences in EF-frontal (B [SE] = 16.51 [7.43]; 95% CI, 1.36-31.67; η2p = 0.14) and EF-parietal (B [SE] = 17.68 [6.99]; 95% CI, 3.43-31.94; η2p = 0.17) associations were found in the LL group but not the HL group (EF-frontal: B [SE] = -1.36 [3.87]; 95% CI, -9.07 to 6.35; η2p = 0.00; EF-parietal: B [SE] = -2.81 [4.09]; 95% CI, -10.96 to 5.34; η2p = 0.01). Autism likelihood group differences in EF-frontal (B [SE] = -9.93 [4.88]; 95% CI, -19.73 to -0.12; η2p = 0.08) and EF-parietal (B [SE] = -15.44 [5.18]; 95% CI, -25.86 to -5.02; η2p = 0.16) associations were found in girls not boys (EF-frontal: B [SE] = 6.51 [5.88]; 95% CI, -5.26 to 18.27; η2p = 0.02; EF-parietal: B [SE] = 4.18 [5.48]; 95% CI, -6.78 to 15.15; η2p = 0.01). Conclusions and Relevance: This cohort study of toddlers at HL and LL of autism suggests that there is an association between sex and EF and that brain-behavior associations in EF may be altered in children at HL of autism. Furthermore, EF deficits may aggregate in families, particularly in girls.


Autism Spectrum Disorder , Autistic Disorder , Infant , Humans , Male , Female , Child, Preschool , Young Adult , Adult , Executive Function , Autistic Disorder/diagnostic imaging , Cohort Studies , Autism Spectrum Disorder/epidemiology , Prospective Studies
7.
Nature ; 617(7960): 351-359, 2023 May.
Article En | MEDLINE | ID: mdl-37076628

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Brain Mapping , Cognition , Motor Cortex , Brain Mapping/methods , Hand/physiology , Magnetic Resonance Imaging , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Humans , Infant, Newborn , Infant , Child , Animals , Macaca/anatomy & histology , Macaca/physiology , Foot/physiology , Mouth/physiology , Datasets as Topic
8.
Shape Med Imaging (2023) ; 14350: 248-258, 2023 Oct.
Article En | MEDLINE | ID: mdl-38425723

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

9.
J Neurodev Disord ; 14(1): 58, 2022 12 14.
Article En | MEDLINE | ID: mdl-36517753

BACKGROUND: A central challenge in preclinical research investigating the biology of autism spectrum disorder (ASD) is the translation of ASD-related social phenotypes across humans and animal models. Social orienting, an observable, evolutionarily conserved behavior, represents a promising cross-species ASD phenotype given that disrupted social orienting is an early-emerging ASD feature with evidence for predicting familial recurrence. Here, we adapt a competing-stimulus social orienting task from domesticated dogs to naturalistic play behavior in human toddlers and test whether this approach indexes decreased social orienting in ASD. METHODS: Play behavior was coded from the Autism Diagnostic Observation Schedule (ADOS) in two samples of toddlers, each with and without ASD. Sample 1 (n = 16) consisted of community-ascertained research participants, while Sample 2 involved a prospective study of infants at a high or low familial liability for ASD (n = 67). Coding quantified the child's looks towards the experimenter and caregiver, a social stimulus, while playing with high-interest toys, a non-social stimulus. A competing-stimulus measure of "Social Attention During Object Engagement" (SADOE) was calculated by dividing the number of social looks by total time spent playing with toys. SADOE was compared based on ASD diagnosis and differing familial liability for ASD. RESULTS: In both samples, toddlers with ASD exhibited significantly lower SADOE compared to toddlers without ASD, with large effect sizes (Hedges' g ≥ 0.92) driven by a lower frequency of child-initiated spontaneous looks. Among toddlers at high familial likelihood of ASD, toddlers with ASD showed lower SADOE than toddlers without ASD, while SADOE did not differ based on presence or absence of familial ASD risk alone. SADOE correlated negatively with ADOS social affect calibrated severity scores and positively with the Communication and Symbolic Behavior Scales social subscale. In a binary logistic regression model, SADOE alone correctly classified 74.1% of cases, which rose to 85.2% when combined with cognitive development. CONCLUSIONS: This work suggests that a brief behavioral measure pitting a high-interest nonsocial stimulus against the innate draw of social partners can serve as a feasible cross-species measure of social orienting, with implications for genetically informative behavioral phenotyping of social deficits in ASD and other neurodevelopmental disorders.


Autism Spectrum Disorder , Infant , Humans , Animals , Dogs , Autism Spectrum Disorder/psychology , Social Behavior , Prospective Studies , Attention , Cognition
10.
Dev Psychopathol ; : 1-11, 2022 Oct 03.
Article En | MEDLINE | ID: mdl-36189644

Pre-diagnostic deficits in social motivation are hypothesized to contribute to autism spectrum disorder (ASD), a heritable neurodevelopmental condition. We evaluated psychometric properties of a social motivation index (SMI) using parent-report item-level data from 597 participants in a prospective cohort of infant siblings at high and low familial risk for ASD. We tested whether lower SMI scores at 6, 12, and 24 months were associated with a 24-month ASD diagnosis and whether social motivation's course differed relative to familial ASD liability. The SMI displayed good internal consistency and temporal stability. Children diagnosed with ASD displayed lower mean SMI T-scores at all ages and a decrease in mean T-scores across age. Lower group-level 6-month scores corresponded with higher familial ASD liability. Among high-risk infants, strong decline in SMI T-scores was associated with 10-fold odds of diagnosis. Infant social motivation is quantifiable by parental report, differentiates children with versus without later ASD by age 6 months, and tracks with familial ASD liability, consistent with a diagnostic and susceptibility marker of ASD. Early decrements and decline in social motivation indicate increased likelihood of ASD, highlighting social motivation's importance to risk assessment and clarification of the ontogeny of ASD.

11.
Biol Psychiatry ; 92(8): 654-662, 2022 10 15.
Article En | MEDLINE | ID: mdl-35965107

BACKGROUND: Sex differences in the prevalence of neurodevelopmental disorders are particularly evident in autism spectrum disorder (ASD). Heterogeneous symptom presentation and the potential of measurement bias hinder early ASD detection in females and may contribute to discrepant prevalence estimates. We examined trajectories of social communication (SC) and restricted and repetitive behaviors (RRBs) in a sample of infant siblings of children with ASD, adjusting for age- and sex-based measurement bias. We hypothesized that leveraging a prospective elevated familial likelihood sample, deriving data-driven behavioral constructs, and accounting for measurement bias would reveal less discrepant sex ratios than are typically seen in ASD. METHODS: We conducted direct assessments of ASD symptoms at 6 to 9, 12 to 15, 24, and 36 to 60 months of age (total nobservations = 1254) with infant siblings of children with ASD (n = 377) and a lower ASD-familial-likelihood comparison group (n = 168; nobservations = 527). We established measurement invariance across age and sex for separate models of SC and RRB. We then conducted latent class growth mixture modeling with the longitudinal data and evaluated for sex differences in trajectory membership. RESULTS: We identified 2 latent classes in the SC and RRB models with equal sex ratios in the high-concern cluster for both SC and RRB. Sex differences were also observed in the SC high-concern cluster, indicating that girls classified as having elevated social concerns demonstrated milder symptoms than boys in this group. CONCLUSIONS: This novel approach for characterizing ASD symptom progression highlights the utility of assessing and adjusting for sex-related measurement bias and identifying sex-specific patterns of symptom emergence.


Autism Spectrum Disorder , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Male , Prospective Studies , Sex Characteristics , Sex Ratio , Siblings
12.
Am J Psychiatry ; 179(8): 573-585, 2022 08.
Article En | MEDLINE | ID: mdl-35615814

OBJECTIVE: Autism spectrum disorder (ASD) is heritable, and younger siblings of ASD probands are at higher likelihood of developing ASD themselves. Prospective MRI studies of siblings report that atypical brain development precedes ASD diagnosis, although the link between brain maturation and genetic factors is unclear. Given that familial recurrence of ASD is predicted by higher levels of ASD traits in the proband, the authors investigated associations between proband ASD traits and brain development among younger siblings. METHODS: In a sample of 384 proband-sibling pairs (89 pairs concordant for ASD), the authors examined associations between proband ASD traits and sibling brain development at 6, 12, and 24 months in key MRI phenotypes: total cerebral volume, cortical surface area, extra-axial cerebrospinal fluid, occipital cortical surface area, and splenium white matter microstructure. Results from primary analyses led the authors to implement a data-driven approach using functional connectivity MRI at 6 months. RESULTS: Greater levels of proband ASD traits were associated with larger total cerebral volume and surface area and larger surface area and reduced white matter integrity in components of the visual system in siblings who developed ASD. This aligned with weaker functional connectivity between several networks and the visual system among all siblings during infancy. CONCLUSIONS: The findings provide evidence that specific early brain MRI phenotypes of ASD reflect quantitative variation in familial ASD traits. Multimodal anatomical and functional convergence on cortical regions, fiber pathways, and functional networks involved in visual processing suggest that inherited liability has a role in shaping the prodromal development of visual circuitry in ASD.


Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Prospective Studies , Siblings
13.
Child Dev ; 93(5): 1398-1413, 2022 09.
Article En | MEDLINE | ID: mdl-35485579

Using the Infant Behavior Questionnaire-Revised in a longitudinal sample of infant siblings of autistic children (HR; n = 427, 171 female, 83.4% White) and a comparison group of low-risk controls (LR, n = 200, 86 female, 81.5% White), collected between 2007 and 2017, this study identified an invariant factor structure of temperament traits across groups at 6 and 12 months. Second, after partitioning the groups by familial risk and diagnostic outcome at 24 months, results reveal an endophenotypic pattern of Positive Emotionality at both 6 and 12 months, (HR-autism spectrum disorder [ASD] < HR-no-ASD < LR). Third, increased 'Duration of Orienting' at 12 months was associated with lower scores on the 24-month developmental outcomes in HR infants. These findings may augment efforts for early identification of ASD.


Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnosis , Autistic Disorder/diagnosis , Child , Female , Humans , Infant , Infant Behavior , Siblings , Surveys and Questionnaires
14.
Am J Psychiatry ; 179(8): 562-572, 2022 08.
Article En | MEDLINE | ID: mdl-35331012

OBJECTIVE: Previous research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific to the amygdala, and whether it is specific to ASD (or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown. METHODS: Longitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans). RESULTS: Infants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months the ASD group had significantly larger amygdala volume (Cohen's d=0.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24 months when the infants were diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d=2.12), compared with all other groups, which was significantly associated with greater repetitive behaviors. CONCLUSIONS: This is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis.


Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Adolescent , Adult , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Child , Child, Preschool , Fragile X Syndrome/complications , Fragile X Syndrome/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Young Adult
15.
Adv Neural Inf Process Syst ; 35: 13541-13556, 2022 Dec.
Article En | MEDLINE | ID: mdl-37614415

Recent self-supervised advances in medical computer vision exploit the global and local anatomical self-similarity for pretraining prior to downstream tasks such as segmentation. However, current methods assume i.i.d. image acquisition, which is invalid in clinical study designs where follow-up longitudinal scans track subject-specific temporal changes. Further, existing self-supervised methods for medically-relevant image-to-image architectures exploit only spatial or temporal self-similarity and do so via a loss applied only at a single image-scale, with naive multi-scale spatiotemporal extensions collapsing to degenerate solutions. To these ends, this paper makes two contributions: (1) It presents a local and multi-scale spatiotemporal representation learning method for image-to-image architectures trained on longitudinal images. It exploits the spatiotemporal self-similarity of learned multi-scale intra-subject image features for pretraining and develops several feature-wise regularizations that avoid degenerate representations; (2) During finetuning, it proposes a surprisingly simple self-supervised segmentation consistency regularization to exploit intra-subject correlation. Benchmarked across various segmentation tasks, the proposed framework outperforms both well-tuned randomly-initialized baselines and current self-supervised techniques designed for both i.i.d. and longitudinal datasets. These improvements are demonstrated across both longitudinal neurodegenerative adult MRI and developing infant brain MRI and yield both higher performance and longitudinal consistency.

16.
J Dev Orig Health Dis ; 13(3): 310-321, 2022 06.
Article En | MEDLINE | ID: mdl-34321135

Testosterone (T) and cortisol (C) are the end products of neuroendocrine axes that interact with the process of shaping brain structure and function. Relative levels of T:C (TC ratio) may alter prefrontal-amygdala functional connectivity in adulthood. What remains unclear is whether TC-related effects are rooted to childhood and adolescence. We used a healthy cohort of 4-22-year-olds to test for associations between TC ratios, brain structure (amygdala volume, cortical thickness (CTh), and their coordinated growth), as well as cognitive and behavioral development. We found greater TC ratios to be associated with the growth of specific brain structures: 1) parietal CTh; 2) covariance of the amygdala with CTh in visual and somatosensory areas. These brain parameters were in turn associated with lower verbal/executive function and higher spatial working memory. In sum, individual TC profiles may confer a particular brain phenotype and set of cognitive strengths and vulnerabilities, prior to adulthood.


Hydrocortisone , Testosterone , Adult , Amygdala , Child , Cognition , Humans , Longitudinal Studies
17.
J Autism Dev Disord ; 52(4): 1423-1434, 2022 Apr.
Article En | MEDLINE | ID: mdl-33956255

We examined the relations of restricted and repetitive behaviors (RRB; insistence on sameness, repetitive sensory-motor, self-injurious behavior) to social skills overall and aspects that comprise social skills as measured by the VABS-II (coping skills, play/leisure time, interpersonal relationships) in 24- (n = 63) and 36-month old (n = 35), high-familial-risk toddlers with ASD. Hierarchical linear regression results indicated that repetitive sensory-motor was the best predictor of social skills overall. Secondary results indicated that all three RRB subtypes were associated with each subdomain of social skills; however, repetitive sensory-motor was the strongest and most consistent among these effects. While our results suggests a general negative relation of subtypes of RRB to aspects of adaptive social function, repetitive sensory-motor behaviors may be of particular relevance to the development of social skills during toddlerhood.


Autism Spectrum Disorder , Autistic Disorder , Child, Preschool , Cognition , Humans , Social Skills , Stereotyped Behavior
18.
J Am Acad Child Adolesc Psychiatry ; 61(3): 413-422, 2022 03.
Article En | MEDLINE | ID: mdl-33965519

OBJECTIVE: With development, infants become increasingly responsive to the many attention-sharing cues of adults; however, little work has examined how this ability emerges in typical development or in the context of early autism spectrum disorder (ASD). This study characterized variation in the type of cue needed to elicit a response to joint attention (RJA) using the Dimensional Joint Attention Assessment (DJAA) during naturalistic play. METHOD: We measured the average redundancy of cue type required for infants to follow RJA bids from an experimenter, as well as their response consistency, in 268 infants at high (HR, n = 68) and low (LR, N = 200) familial risk for ASD. Infants were assessed between 8 and 18 months of age and followed up with developmental and clinical assessments at 24 or 36 months. Our sample consisted of LR infants, as well as HR infants who did (HR-ASD) and did not (HR-neg) develop ASD at 24 months. RESULTS: We found that HR and LR infants developed abilities to respond to less redundant (more sophisticated) RJA cues at different rates, and that HR-ASD infants displayed delayed abilities, identifiable as early as 9 months, compared to both HR-neg and LR infants. Interestingly, results suggest that HR-neg infants may exhibit a propensity to respond to less redundant (more sophisticated) RJA cues relative to both HR-ASD and LR infants. CONCLUSION: Using an approach to characterize variable performance of RJA cue-reading abilities, findings from this study enhance our understanding of both typical and ASD-related proficiencies and deficits in RJA development.


Autism Spectrum Disorder , Autistic Disorder , Adult , Attention , Child , Cues , Humans , Infant , Siblings
19.
Front Neurosci ; 15: 653213, 2021.
Article En | MEDLINE | ID: mdl-34566556

The infant brain undergoes a remarkable period of neural development that is crucial for the development of cognitive and behavioral capacities (Hasegawa et al., 2018). Longitudinal magnetic resonance imaging (MRI) is able to characterize the developmental trajectories and is critical in neuroimaging studies of early brain development. However, missing data at different time points is an unavoidable occurrence in longitudinal studies owing to participant attrition and scan failure. Compared to dropping incomplete data, data imputation is considered a better solution to address such missing data in order to preserve all available samples. In this paper, we adapt generative adversarial networks (GAN) to a new application: longitudinal image prediction of structural MRI in the first year of life. In contrast to existing medical image-to-image translation applications of GANs, where inputs and outputs share a very close anatomical structure, our task is more challenging as brain size, shape and tissue contrast vary significantly between the input data and the predicted data. Several improvements over existing GAN approaches are proposed to address these challenges in our task. To enhance the realism, crispness, and accuracy of the predicted images, we incorporate both a traditional voxel-wise reconstruction loss as well as a perceptual loss term into the adversarial learning scheme. As the differing contrast changes in T1w and T2w MR images in the first year of life, we incorporate multi-contrast images leading to our proposed 3D multi-contrast perceptual adversarial network (MPGAN). Extensive evaluations are performed to assess the qualityand fidelity of the predicted images, including qualitative and quantitative assessments of the image appearance, as well as quantitative assessment on two segmentation tasks. Our experimental results show that our MPGAN is an effective solution for longitudinal MR image data imputation in the infant brain. We further apply our predicted/imputed images to two practical tasks, a regression task and a classification task, in order to highlight the enhanced task-related performance following image imputation. The results show that the model performance in both tasks is improved by including the additional imputed data, demonstrating the usability of the predicted images generated from our approach.

20.
Transl Sci Rare Dis ; 5(3-4): 99-129, 2021.
Article En | MEDLINE | ID: mdl-34268067

BACKGROUND: Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE: The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS: NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS: This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS: This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.

...