Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Immunol ; 13: 820131, 2022.
Article En | MEDLINE | ID: mdl-35251001

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


COVID-19 Drug Treatment , Down-Regulation/drug effects , Inflammation/drug therapy , Membrane Microdomains/drug effects , SARS-CoV-2/pathogenicity , Simvastatin/pharmacology , Animals , COVID-19/virology , Disease Models, Animal , Humans , Inflammation/virology , Lung/virology , Mice , Mice, Transgenic , Virus Replication/drug effects
2.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Article En | MEDLINE | ID: mdl-33326472

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


COVID-19/complications , Inflammation Mediators/metabolism , Inflammation/etiology , Lipid Droplets/pathology , SARS-CoV-2/isolation & purification , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Humans , Inflammation/metabolism , Inflammation/pathology , Vero Cells , Virus Replication
3.
Virology ; 399(1): 31-38, 2010 Mar 30.
Article En | MEDLINE | ID: mdl-20085845

The cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of inflammatory and infectious diseases, however its role in HIV-1 infection is unknown. Here we show that HIV-1-infected patients present elevated plasma levels of MIF, that HIV-1-infected peripheral blood mononuclear cells (PBMCs) release a greater amount of MIF, and that the HIV-1 envelope glycoprotein gp120 induces MIF secretion from uninfected PBMCs. The HIV-1 replication in PBMCs declines when these cells are treated with anti-MIF antibodies, and exposure of HIV-1-infected cells to the ABC-transporter inhibitor probenecid results in inhibition of MIF secretion. The addition of recombinant MIF (rhMIF) to HIV-1-infected PBMCs enhances viral replication of CCR5- or CXCR4-tropic HIV-1 isolates. Using a T CD4(+) cell lineage containing an HIV long terminal repeats (LTR)-Luciferase construct, we detected that rhMIF promotes transcription from HIV-1 LTR. Our results show that HIV-1 induces MIF secretion and suggest that MIF influences the HIV-1 biology through activation of HIV-1 LTR.


HIV Infections/virology , HIV-1 , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Virus Replication/physiology , ATP-Binding Cassette Transporters/antagonists & inhibitors , Cell Line , HIV Envelope Protein gp120/physiology , HIV Infections/blood , HIV Long Terminal Repeat/physiology , Humans , Intramolecular Oxidoreductases/biosynthesis , Leukocytes, Mononuclear/physiology , Macrophage Migration-Inhibitory Factors/biosynthesis , Probenecid/pharmacology , Recombinant Proteins
4.
FASEB J ; 24(2): 617-26, 2010 Feb.
Article En | MEDLINE | ID: mdl-19812373

The evolution of Leishmania infection depends on the balance between microbicidal and suppressor macrophage functions. Double-stranded RNA (dsRNA)-activated protein kinase R (PKR), a classic antiviral protein, is able to regulate a number of signaling pathways and macrophage functions. We investigated the possible role of PKR in the modulation of Leishmania infection. Our data demonstrated that Leishmania amazonensis infection led to PKR activation and increased PKR levels. Consistently, in macrophages from PKR knockout 129Sv/Ev mice and RAW-264.7 cells stably expressing a dominant-negative (DN) construct of PKR (DN-PKR), L. amazonensis infection was strongly reduced. The treatment of infected macrophages with the synthetic double-stranded RNA poly(I:C), a potent PKR inductor, increased L. amazonensis intracellular proliferation. This effect was reversed by 2-aminopurine (2-AP), a pharmacological inhibitor of PKR, as well as by the expression of DN-PKR. NO release induced by dsRNA treatment was inhibited by L. amazonensis through NF-kappaB modulation. PKR activation induced by dsRNA also resulted in IL-10 production, whose neutralization with specific antibody completely abrogated L. amazonensis proliferation. Our data demonstrated a new role of PKR in protozoan parasitic infection through IL-10 modulation.


Leishmania/pathogenicity , Macrophages/parasitology , eIF-2 Kinase/metabolism , 2-Aminopurine/pharmacology , Animals , Enzyme Activation , Humans , Interleukin-10/metabolism , Leishmania/genetics , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Poly I-C/pharmacology , RNA, Double-Stranded/genetics
...