Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci (Camb) ; 10(3): 620-630, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38434173

RESUMEN

Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.

2.
Chemosphere ; 351: 141140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190943

RESUMEN

Oxides of silicon (Si), manganese (Mn), and zinc (Zn) have been used as soil amendments to reduce As mobility and uptake in paddy soil systems. However, these amendments are hypothesized to be affected differently depending on the soil pH and their effect on As speciation in rice paddy systems is not fully understood. Herein, we used a microcosm experiment to investigate the effects of natural Si-rich fly ash and synthetic Mn and Zn oxides on the temporal development of porewater chemistry, including aqueous As speciation (As(III), As(V), MMA, DMA, and DMMTA) and solid-phase As solubility, in a naturally calcareous soil with or without soil acidification (with sulfuric acid) during 28 days of flooding and subsequent 14 days of drainage. We found that soil acidification to pH 4.5 considerably increased the solubility of Si, Fe, Mn, and Zn compared to the non-acidified soil. Additions of Mn and Zn oxides decreased the concentrations of dissolved arsenite and arsenate in the non-acidified soil whereas additions of Zn oxide and combined Si-Zn oxides increased them in the acidified soil. The Si-rich fly ash did not increase dissolved Si and As in the acidified and non-acidified soils. Dimethylated monothioarsenate (DMMTA) was mainly observed in the acidified soil during the later stage of soil flooding. The initial 28 days of soil flooding decreased the levels of soluble and exchangeable As and increased As associated with Mn oxides, whereas the subsequent 14 days of soil drainage reversed the trend. This study highlighted that soil acidification considerably controlled the solubilization of Ca and Fe, thus influencing the soil pH-Eh buffering capacity, the solubility of Si, Mn, and Zn oxides, and the mobility of different As species in carbonate-rich and acidic soils under redox fluctuations.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Óxido de Zinc , Arsénico/análisis , Manganeso/farmacología , Suelo , Silicio/farmacología , Ceniza del Carbón/farmacología , Óxido de Zinc/farmacología , Óxidos/farmacología , Compuestos Orgánicos/farmacología , Zinc/farmacología , Contaminantes del Suelo/análisis
3.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063696

RESUMEN

Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs.

4.
Anal Chim Acta ; 1279: 341833, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827648

RESUMEN

Although oceans play a key role in the global selenium (Se) cycle, there is currently very little quantitative information available on the distribution of Se concentrations and Se speciation in marine environments. In general, determining Se concentration and speciation in seawater is highly challenging due to very low Se levels ((sub)ng⋅L-1), whereas matrix elements interfering Se pre-concentration and detection are up to the g⋅L-1 levels. In this study, we established a sensitive method for the determination of the various Se chemical fractions present in natural seawater, i.e. selenite (SeIV), selenate (SeVI), organic Se-II + Se0 and total Se, using species-specific isotope dilution gas chromatography coupled to inductively coupled plasma mass spectrometry (ID-GC-ICP-MS). We compared different derivatization reagents and optimized specific pre-treatment protocols, including a microwave assisted oxidation protocol for the determination of total Se and organic Se-II + Se0 using H2O2. To increase sensitivity, we developed an online pre-concentration method based on large volume injection (LVI) using a programmed temperature vaporization (PTV) inlet. Eventually, the developed method achieved low absolute and methodological detection limits, i.e., respectively, 0.1-0.3 pg and 0.9-3.1 ng.L-1 for the different fractions. The accuracy of our method was of 2% for a certified reference material (CRM) diluted in artificial seawater while the precision was better than 4% for a freshwater CRM in artificial seawater matrix as well as two common seawater CRMs certified for trace elements excluding Se. As a proof-of-concept, we quantified the various Se fractions in a large number of natural water samples from the Baltic and North Seas, encompassing a wide range of salinity (7-35 psu), which shows that its detection limits are sufficient to determine total Se, SeIV, SeVI and organic Se-II + Se0 concentrations in brackish and marine systems.

5.
Environ Sci Technol ; 57(38): 14340-14350, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698522

RESUMEN

Identifying Hg sources to aquatic ecosystems and processes controlling the levels of monomethylmercury (MMHg) is critical for developing efficient policies of Hg emissions reduction. Here we measured Hg concentrations and stable isotopes in sediment, seston, and fishes from the various basins of the Baltic Sea, a large brackish ecosystem presenting extensive gradients in salinity, redox conditions, dissolved organic matter (DOM) composition, and biological activities. We found that Hg mass dependent fractionation (Hg-MDF) values in sediments mostly reflect a mixing between light terrestrial Hg and heavier industrial sources, whereas odd Hg isotope mass independent fractionation (odd Hg-MIF) reveals atmospheric inputs. Seston presents intermediate Hg-MDF and odd Hg-MIF values falling between sediments and fish, but in northern basins, high even Hg-MIF values suggest the preferential accumulation of wet-deposited Hg. Odd Hg-MIF values in fish indicate an overall low extent of MMHg photodegradation due to limited sunlight exposure and penetration but also reveal large spatial differences. The photodegradation extent is lowest in the central basin with recurrent algal blooms due to their shading effect and is highest in the northern, least saline basin with high concentrations of terrestrial DOM. As increased loads of terrestrial DOM are expected in many coastal areas due to global changes, its impact on MMHg photodegradation needs to be better understood and accounted for when predicting future MMHg concentrations in aquatic ecosystems.


Asunto(s)
Ecosistema , Mercurio , Animales , Fraccionamiento Químico , Materia Orgánica Disuelta , Isótopos
6.
Anal Chem ; 95(5): 2967-2974, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36696515

RESUMEN

Emissions of volatile organic sulfur (S), selenium (Se), bromine (Br), and iodine (I) species from aquatic ecosystems represent an important source of these elements into the atmosphere. Available methods to measure these species are either not sensitive enough or not automated, which hinder a full understanding of species distribution and production mechanisms. Here, we present a sensitive and high-throughput method for the simultaneous and comprehensive quantification of S, Se, Br, and I volatile organic species in atmospheric and aqueous samples using a preconcentration step onto sorbent tubes and subsequent analysis by thermal desorption coupled to gas chromatography and inductively coupled plasma mass spectrometry (TD-GC-ICP-MS). Selected commercially available sorbent tubes, consisting of mixed porous polymer and graphitized black carbon, offered the highest trapping capacity and lowest loss of species when stored at -20 °C for 28 days after sampling. After optimization of the TD-GC-ICP-MS method, absolute detection limits were better than 3.8 pg, 9.1 fg, 313 fg, and 50 fg, respectively, for S, Se, Br, and I species. As a proof of concept, the concentrations of target species were determined in aqueous and continuously collected atmospheric samples during a cruise in the Baltic and North Seas. Moreover, unknown S, Br, and I volatile species were detected in both aqueous and atmospheric samples demonstrating the full potential of the method.

7.
Nat Commun ; 13(1): 6974, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379945

RESUMEN

Dietary deficiency of selenium is a global health threat related to low selenium concentrations in crops. Despite the chemical similarity of selenium to the two more abundantly studied elements sulfur and arsenic, the understanding of its accumulation in soils and availability for plants is limited. The lack of understanding of soil selenium cycling is largely due to the unavailability of methods to characterize selenium species in soils, especially the organic ones. Here we develop a size-resolved multi-elemental method using liquid chromatography and elemental mass spectrometry, which enables an advanced characterization of selenium, sulfur, and arsenic species in soil extracts. We apply the analytical approach to soils sampled along the Kohala rainfall gradient on Big Island (Hawaii), which cover a large range of organic carbon and (oxy)hydroxides contents. Similarly to sulfur but contrarily to arsenic, a large fraction of selenium is found associated with organic matter in these soils. However, while sulfur and arsenic are predominantly found as oxyanions in water extracts, selenium mainly exists as small hydrophilic organic compounds. Combining Kohala soil speciation data with concentrations in parent rock and plants further suggests that selenium association with organic matter limits its mobility in soils and availability for plants.


Asunto(s)
Arsénico , Selenio , Contaminantes del Suelo , Suelo/química , Selenio/química , Disponibilidad Biológica , Arsénico/análisis , Contaminantes del Suelo/análisis , Azufre
8.
Environ Sci Technol ; 56(4): 2258-2268, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35114086

RESUMEN

Photochemical reactions are major pathways for the removal of Hg species from aquatic ecosystems, lowering the concentration of monomethylmercury (MMHg) and its bioaccumulation in foodwebs. Here, we investigated the rates and environmental drivers of MMHg photodegradation and inorganic Hg (IHg) photoreduction in waters of two high-altitude lakes from the Bolivian Altiplano representing meso- to eutrophic conditions. We incubated three contrasting waters in situ at two depths after adding Hg-enriched isotopic species to derive rate constants. We found that transformations mostly occurred in subsurface waters exposed to UV radiation and were mainly modulated by the dissolved organic matter (DOM) level. In parallel, we incubated the same waters after the addition of low concentrations of natural MMHg and followed the stable isotope composition of the remaining Hg species by compound-specific isotope analysis allowing the determination of enrichment factors and mass-independent fractionation (MIF) slopes (Δ199Hg/Δ201Hg) during in situ MMHg photodegradation in natural waters. We found that MIF enrichment factors potentially range from -11 to -19‰ and average -14.3 ± 0.6‰ (1 SE). The MIF slope diverged depending on the DOM level, ranging from 1.24 ± 0.03 to 1.34 ± 0.02 for the low and high DOM waters, respectively, and matched the MMHg MIF slope recorded in fish from the same lake. Our in situ results thus reveal (i) a relatively similar extent of Hg isotopic fractionation during MMHg photodegradation among contrasted natural waters and compared to previous laboratory experiments and (ii) that the MMHg MIF recorded in fish is characteristic for the MMHg bonding environment. They will enable a better assessment of the extent and conditions conducive to MMHg photodegradation in aquatic ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Altitud , Animales , Bolivia , Ecosistema , Monitoreo del Ambiente , Peces/metabolismo , Isótopos , Lagos/química , Mercurio/análisis , Isótopos de Mercurio/análisis , Compuestos de Metilmercurio/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Technol ; 55(8): 5547-5558, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33788559

RESUMEN

Recently, we suggested that hypobromous acid (HOBr) is a sink for the marine volatile organic sulfur compound dimethyl sulfide (DMS). However, HOBr is also known to react with reactive moieties of dissolved organic matter (DOM) such as phenolic compounds to form bromoform (CHBr3) and other brominated compounds. The reaction between HOBr and DMS may thus compete with the reaction between HOBr and DOM. To study this potential competition, kinetic batch and diffusion-reactor experiments with DMS, HOBr, and DOM were performed. Based on the reaction kinetics, we modeled concentrations of DMS, HOBr, and CHBr3 during typical algal bloom fluxes of DMS and HOBr (10-13 to 10-9 M s-1). For an intermediate to high HOBr flux (≥10-11 M s-1) and a DMS flux ≤10-11 M s-1, the model shows that the DMS degradation by HOBr was higher than for photochemical oxidation, biological consumption, and sea-air gas exchange combined. For HOBr fluxes ≤10-11 M s-1 and a DMS flux of 10-11 M s-1, our model shows that CHBr3 decreases by 86% compared to a lower DMS flux of 10-12 M s-1. Therefore, the reaction between HOBr and DMS likely not only presents a sink for DMS but also may lead to suppressed CHBr3 formation.


Asunto(s)
Bromatos , Trihalometanos , Sulfuros
10.
Environ Sci Technol ; 55(5): 3399-3407, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33554594

RESUMEN

Mercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg0) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. FeII-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized HgII reducers. Another potentially Hg-reducing mineral, which commonly occurs in Fe- and organic/P-rich sediments and soils, is the ferrous iron phosphate mineral vivianite (FeII3(PO4)2·8H2O), but its reaction with HgII has not been studied to date. Here, nanoparticulate vivianite (particle size ∼ 50 nm; FeII content > 98%) was chemically synthesized and characterized by a combination of chemical, spectroscopic, and microscopic analyses. Its ability to reduce HgII was investigated at circumneutral pH under anoxic conditions over a range of FeII/HgII ratios (0.1-1000). For FeII/HgII ratios ≥1, which are representative of natural environments, HgII was very quickly and efficiently reduced to Hg0. The ability of vivianite to reduce HgII was found to be similar to those of carbonate green rust and siderite, two of the most effective Hg-reducing minerals. Our results suggest that vivianite may be involved in abiotic HgII reduction in Fe and organic/P-rich soils and sediments, potentially contributing to Hg evasion while also limiting MeHg formation in these ecosystems.


Asunto(s)
Mercurio , Ecosistema , Compuestos Ferrosos , Oxidación-Reducción , Fosfatos
11.
Environ Sci Technol ; 55(2): 1319-1328, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33377766

RESUMEN

Under anoxic conditions, the interactions between As-bearing ferrihydrite (Fh) and As(V)-reducing bacteria are known to cause Fh transformations and As mobilization. However, the impact of different types of organic matter (OM) on microbial As/Fe transformation in As-bearing Fh-organic associations remains unclear. In our study, we therefore exposed arsenate-adsorbed ferrihydrite, ferrihydrite-PGA (polygalacturonic acid), and ferrihydrite-HA (humic acid) complexes to two typical Fe(III)- and As(V)-reducing bacteria, and followed the fate of Fe and As in the solid and aqueous phases. Results show that PGA and HA promoted the reductive dissolution of Fh, resulting in 0.7-1.6 and 0.8-1.9 times more As release than in the OM-free Fh, respectively. This was achieved by higher cell numbers in the presence of PGA, and through Fe-reduction via electron-shuttling facilitated by HA. Arsenic-XAS results showed that the solid-phase arsenite fraction in Fh-PGA and Fh-HA was 15-19% and 27-28% higher than in pure Fh, respectively. The solid-associated arsenite fraction likely increased because PGA promoted cell growth and As(V) reduction, while HA provided electron shuttling compounds for direct microbial As(V)-reduction. Collectively, our findings demonstrate that As speciation and partitioning during microbial reduction of Fh-organic associations are strongly influenced by PGA and HA, as well as the strains' abilities to utilize electron-shuttling compounds.


Asunto(s)
Arsénico , Compuestos Férricos , Hierro , Oxidación-Reducción
12.
Water Res ; 175: 115708, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32220669

RESUMEN

Mercury (Hg) pollution threatens ecosystems and human health. Wastewater treatment plants (WWTPs) play a key role in limiting Hg discharges from wastewaters to rivers and lakes, but large-scale studies to estimate Hg loads and discharge at national levels are scarce. We assessed the concentration, flux, speciation, and removal of Hg in municipal wastewater throughout Switzerland by investigating 64 WWTPs in a pre-study and a subset of 28 WWTPs in the main study. We also studied the behavior and pathways of Hg along the various treatment steps in a state-of-the-art WWTP. The resulting dataset, representative of industrialized countries, provides an overview of (i) current Hg concentration ranges, (ii) average per capita loads, and (iii) wastewater Hg inputs into surface waters. The results allowed estimation of a total Hg (THg) load in Swiss wastewater of 130 ± 30 kg THg/year (15.7 mg/capita/y), of which 96 ± 4% is retained in sewage sludge. About 4.7 ± 0.5 kg THg/year (0.57 mg/capita/y) is discharged with the treated wastewater into surface waters. This corresponds to only 1.5-3% of the THg load carried by the major Swiss rivers, indicating that >95% of riverine Hg originates from other sources. Extrapolation to the population of Europe would yield a total amount of 11,700 kg THg/year in raw wastewater, with some 480 kg THg/year discharged to surface waters. Monomethyl mercury on average accounted for 0.23% of THg, and its fraction remained constant along the different treatment steps.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Europa (Continente) , Encuestas y Cuestionarios , Suiza , Aguas Residuales
13.
Environ Sci Technol ; 53(22): 13146-13157, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31613095

RESUMEN

Marine emissions of dimethyl sulfide (DMS) to the atmosphere play a fundamental role in the global sulfur (S) cycle and have important consequences for the Earth's radiative balance. In the ocean, DMS is mainly produced by marine algae and bacteria via cleavage of the precursor compound dimethylsulfoniopropionate (DMSP). Here, we studied the reaction between DMS and the strong oxidant hypobromous acid (HOBr), which is also produced by marine algae. Further, reactions between DMS oxidation products and HOBr were studied. The second-order rate constants were determined in competition kinetic experiments using sulfite as a competitor. In addition, we developed a new HPLC-ICP-MS/MS method to identify and quantify the oxidation products of DMS and related compounds. We found that HOBr reacts very fast with DMS to dimethyl sulfoxide (DMSO), with a second-order rate constant of 1.6 × 109 M-1 s-1, while the subsequent oxidation of DMSO to dimethyl sulfone (DMSO2) is much slower (0.4 M-1 s-1). Concentrations of DMSP, DMSO2, and methanesulfonic acid (MSA) did not decrease when exposed to excess concentrations of HOBr, implying that these S-containing compounds are not or only slightly reactive toward HOBr. A quantitative comparison of known DMS sinks shows that HOBr may be an important, hitherto neglected sink for marine DMS that needs to be considered in ocean-atmosphere chemistry models.


Asunto(s)
Compuestos de Sulfonio , Espectrometría de Masas en Tándem , Bromatos , Sulfuros
14.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30242005

RESUMEN

Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.


Asunto(s)
Bacterias/metabolismo , Hierro/metabolismo , Lagos/microbiología , Metano/metabolismo , Compuestos de Metilmercurio/metabolismo , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Sedimentos Geológicos/microbiología , Mercurio/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
15.
Environ Sci Technol ; 52(17): 9758-9767, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30037219

RESUMEN

The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or µmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Perifiton , Contaminantes Químicos del Agua , Altitud , Biopelículas , Ecosistema , Lagos , Metilación , Compuestos de Sulfhidrilo
16.
Anal Chem ; 90(13): 7809-7816, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29879358

RESUMEN

Stable Hg isotope analyses are nowadays widely employed to discriminate Hg sources and understand its biogeochemical cycle. Until now, total Hg isotopic compositions have been mainly used but Hg compound-specific isotopic analysis (CSIA) methodologies are emerging. Online Hg-CSIA were limited to samples containing high concentrations, but in this work we overcome this limitation for the measurement of inorganic (IHg) and monomethylmercury (MMHg) by gas chromatography hyphenated to multicollector-inductively coupled plasma mass spectrometry (GC/MC-ICPMS) through the use of an automated online preconcentration strategy, allowing injection volumes up to 100 times larger than usual. The preconcentration of Hg species and subsequent transfer to the column were achieved by a programmed temperature vaporization (PTV) injector fitted with a packed liner. The PTV parameters were first optimized using a quadrupole ICPMS, and then its suitability for Hg-CSIA was evaluated with long-term replicate analysis of various standards and reference materials (RMs). The large preconcentration capability enables analyses with Hg concentrations in the organic solvent 2 orders of magnitude lower than the previous conventional GC/MC-ICPMS method, but a compound specific standard bracketing procedure was required for MMHg in order to correct for the differential behavior of Hg species in the liner. The external reproducibility of the method ranged from 0.19 to 0.39 ‰ for Δ199Hg and δ202Hg (as 2 SD, n = 143-167) depending on the species. The analysis of various RMs demonstrated the applicability to environmental samples with species concentrations down to about 150 ng g-1. This new methodology opens the way for a much wider range of online Hg-CSIA measurements that will improve our understanding of the Hg biogeochemical cycle.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Límite de Detección , Compuestos de Mercurio/análisis , Compuestos de Mercurio/aislamiento & purificación , Gases em Plasma/química , Isótopos/química , Compuestos de Mercurio/química , Reproducibilidad de los Resultados
18.
Nat Commun ; 8: 14255, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181492

RESUMEN

A detailed understanding of the formation of the potent neurotoxic methylmercury is needed to explain the large observed variability in methylmercury levels in aquatic systems. While it is known that organic matter interacts strongly with mercury, the role of organic matter composition in the formation of methylmercury in aquatic systems remains poorly understood. Here we show that phytoplankton-derived organic compounds enhance mercury methylation rates in boreal lake sediments through an overall increase of bacterial activity. Accordingly, in situ mercury methylation defines methylmercury levels in lake sediments strongly influenced by planktonic blooms. In contrast, sediments dominated by terrigenous organic matter inputs have far lower methylation rates but higher concentrations of methylmercury, suggesting that methylmercury was formed in the catchment and imported into lakes. Our findings demonstrate that the origin and molecular composition of organic matter are critical parameters to understand and predict methylmercury formation and accumulation in boreal lake sediments.


Asunto(s)
Lagos/química , Compuestos de Metilmercurio/química , Ecosistema , Sedimentos Geológicos/química , Metilación , Modelos Teóricos , Análisis de Componente Principal
19.
Environ Sci Technol ; 50(21): 11672-11679, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27670225

RESUMEN

As the methylation of inorganic mercury to neurotoxic methylmercury has been attributed to the activity of anaerobic bacteria, the formation of methylmercury in the oxic water column of marine ecosystems has puzzled scientists over the past years. Here we show for the first time that methylmercury can be produced in particles sinking through oxygenated water column of lakes. Total mercury and methylmercury concentrations were measured in the settling particles and in surface sediments of the largest freshwater lake in Western Europe (Lake Geneva). While total mercury concentration differences between sediments and settling particles were not significant, methylmercury concentrations were about ten-fold greater in settling particles. Methylmercury demethylation rate constants (kd) were of similar magnitude in both compartments. In contrast, mercury methylation rate constants (km) were one order of magnitude greater in settling particles. The net potential for methylmercury formation, assessed by the ratio between the two rate constants (km kd-1), was therefore up to ten fold greater in settling particles, denoting that in situ transformations likely contributed to the high methylmercury concentration found in settling particles. Mercury methylation was inhibited (∼80%) in settling particles amended with molybdate, demonstrating the prominent role of biological sulfate-reduction in the process.


Asunto(s)
Mercurio , Agua , Sedimentos Geológicos , Metilación , Compuestos de Metilmercurio , Contaminantes Químicos del Agua
20.
J Hazard Mater ; 318: 194-202, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27427886

RESUMEN

We investigated the concentration levels, fractionation and molecular weight distribution (MWD) of dissolved organic matter (DOM) and metals (V, Cr, Co, Ni, Cu, Zn, As, Cd, Sn, Ba, Hg and Pb) in a polluted groundwater from an industrial area in Northern Sweden. DOM was mainly recovered in the hydrophobic acidic and hydrophobic neutral sub-fractions (45 and 35%, respectively) while most metals were found in the acidic sub-fractions (46-93%) except for V, Fe and As, which were predominant in the basic sub-fractions (74-93%) and Cd in the neutral ones (50%). DOM exhibited a broad MWD in groundwaters, usually from 5 to 200kDa and was dominated by high molecular weight hydrophobic acids, low molecular weight hydrophilic acids and hydrophilic neutral compounds. Most of the studied metals (Fe, Cr, Co, Sn, Ba, Hg) were associated with the high molecular weight DOM fraction (ca. 40-100kDa). Cu, Pb, Zn, Cd and Ni interacted with a broad range of DOM size fractions but were still most abundant in the high molecular weight fraction. Few metal/metalloids (As, V and Cr in some cases) presented a very weak affinity for DOM and presumably existed predominantly as "free" inorganic ions in solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...