Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149347

RESUMEN

MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.

2.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39211120

RESUMEN

SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A -short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A -short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.

3.
bioRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39185180

RESUMEN

Background: The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown. Methods: An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC). Results: MIRO1 was robustly expressed in VSMCs within human atherosclerotic plaques and promoted VSMC proliferation and neointima formation in mice by blocking cell-cycle progression at G1/S, mitochondrial positioning, and PDGF-induced ATP production and respiration; overexpression of a MIRO1 mutant lacking the EF hands that are required for mitochondrial mobility did not fully rescue these effects. At the ultrastructural level, Miro1 deletion distorted the mitochondrial cristae and reduced the formation of super complexes and the activity of ETC complex I. Conclusions: Mitochondrial motility is essential for VSMC proliferation and relies on MIRO1. The EF-hands of MIRO1 regulate the intracellular positioning of mitochondria. Additionally, the absence of MIRO1 leads to distorted mitochondrial cristae and reduced ATP generation. Our findings demonstrate that motility is linked to mitochondrial ATP production. We elucidated two unrecognized mechanisms through which MIRO1 influences cell proliferation by modulating mitochondria: first, by managing mitochondrial placement via Ca2+-dependent EF hands, and second, by affecting cristae structure and ATP synthesis.

4.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026732

RESUMEN

We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has also been shown to more broadly influence mitochondria, boosting respiratory efficiency and Ca 2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We previously noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily exists in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, protein modeling simulations, and native gel assessments of Mtln-containing complexes in cells and tissues, as well as tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.

5.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853979

RESUMEN

We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca 2+ retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress. We demonstrate that mitochondria from constitutive- and inducible Mtln-knockout (KO) mice are susceptible to membrane freeze-damage and that this can be rescued by acute Mtln re-expression. In mitochondrial-simulated lipid monolayers, we show that synthetic Mtln decreases lipid packing and monolayer elasticity. Lipidomics revealed that Mtln-KO heart tissues show broad decreases in 22:6-containing lipids and increased cardiolipin damage/remodeling. Lastly, we demonstrate that Mtln-KO mice suffer worse myocardial ischemia-reperfusion injury, hinting at a translationally-relevant role for Mtln in cardioprotection. Our work supports a model in which Mtln binds cardiolipin and stabilizes mitochondrial membranes to broadly influence diverse mitochondrial functions, including lipid metabolism, while also protecting against stress.

6.
Cell Metab ; 36(5): 879-881, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38471509

RESUMEN

Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.


Asunto(s)
Codón Iniciador , Fibronectinas , Humanos , Animales , Fibronectinas/metabolismo , Fibronectinas/genética , Ratones , Codón Iniciador/genética , Biosíntesis de Proteínas , Mioquinas
7.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405715

RESUMEN

Background: Centrosomes localize to perinuclear foci where they serve multifunctional roles, arranging the microtubule organizing center (MTOC) and anchoring ubiquitin-proteasome system (UPS) machinery. In mature cardiomyocytes, centrosomal proteins redistribute into a specialized perinuclear cage-like structure, and a potential centrosome-UPS interface has not been studied. Taxilin-beta (Txlnb), a cardiomyocyte-enriched protein, belongs to a family of centrosome adapter proteins implicated in protein quality control. We hypothesize that Txlnb plays a key role in centrosomal-proteasomal crosstalk in cardiomyocytes. Methods: Integrative bioinformatics assessed centrosomal gene dysregulation in failing hearts. Txlnb gain/loss-of-function studies were conducted in cultured cardiomyocytes and mice. Txlnb's role in cardiac proteotoxicity and hypertrophy was examined using CryAB-R120G mice and transverse aortic constriction (TAC), respectively. Molecular modeling investigated Txlnb structure/function. Results: Human failing hearts show consistent dysregulation of many centrosome-associated genes, alongside UPS-related genes. Txlnb emerged as a candidate regulator of cardiomyocyte proteostasis that localizes to the perinuclear centrosomal compartment. Txlnb's interactome strongly supports its involvement in cytoskeletal, microtubule, and UPS processes, particularly centrosome-related functions. Overexpressing Txlnb in cardiomyocytes reduced ubiquitinated protein accumulation and enhanced proteasome activity during hypertrophy. Txlnb-knockout (KO) mouse hearts exhibit proteasomal insufficiency and altered cardiac growth, evidenced by ubiquitinated protein accumulation, decreased 26Sß5 proteasome activity, and lower mass with age. In Cryab-R120G mice, Txlnb loss worsened heart failure, causing lower ejection fractions. After TAC, Txlnb-KO mice also showed reduced ejection fraction, increased heart mass, and elevated ubiquitinated protein accumulation. Investigations into the molecular mechanisms revealed that Txlnb-KO did not affect proteasomal subunit expression but led to the upregulation of Txlna and several centrosomal proteins (Cep63, Ofd1, and Tubg) suggesting altered centrosomal dynamics. Structural predictions support Txlnb's role as a specialized centrosomal-adapter protein bridging centrosomes with proteasomes, confirmed by microtubule-dependent perinuclear localization. Conclusions: Together, these data provide initial evidence connecting Txlnb to cardiac proteostasis, hinting at the potential importance of functional bridging between specialized centrosomes and UPS in cardiomyocytes.

8.
Mol Ther Nucleic Acids ; 34: 102081, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38111915

RESUMEN

MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.

10.
Viruses ; 15(7)2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37515125

RESUMEN

Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.


Asunto(s)
Virus del Dengue , Dengue , Virosis , Humanos , Células Endoteliales , Virus del Dengue/genética , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Virosis/metabolismo
11.
Mol Cell Biol ; 42(10): e0016322, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125265

RESUMEN

Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Factor I del Crecimiento Similar a la Insulina , Ratones , Animales , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Factor de Respuesta Sérica/metabolismo , Sarcómeros/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Conexinas/metabolismo
12.
J Am Heart Assoc ; 11(13): e025687, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35730644

RESUMEN

Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult-onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte-specific knockout mice (Sorbs2-cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult-onset cardiomyopathies and in heart failure models. We generated Sorbs2-cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2-cKO mice begin to show atrial enlargement and P-wave anomalies, without dysregulation of action potential-associated ion channel and gap junction protein expressions. After 6 months, Sorbs2-cKO mice exhibit impaired contractility in dobutamine-treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2-cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2-cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross-link sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Lactante , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Dominios Homologos src
13.
Mol Ther Nucleic Acids ; 28: 1-15, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35280925

RESUMEN

Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.

14.
Nat Commun ; 12(1): 7128, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880230

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/farmacología , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Adulto , Anciano , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Femenino , Terapia Genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares , Distrofia Muscular Facioescapulohumeral/patología , Sistemas de Lectura Abierta/efectos de los fármacos , Interferencia de ARN
15.
J Mol Cell Cardiol ; 141: 70-81, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32209328

RESUMEN

RATIONALE: The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE: To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS: The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 µM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 µM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS: NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.


Asunto(s)
Activación del Canal Iónico , Miocardio/metabolismo , NAD/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Acetilación/efectos de los fármacos , Animales , Suplementos Dietéticos , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Lisina/metabolismo , Metaboloma , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/farmacología , Fosforilación/efectos de los fármacos , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Ratas Sprague-Dawley
17.
JACC Basic Transl Sci ; 3(4): 503-517, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30175274

RESUMEN

Heart failure remains a major cause of morbidity and mortality in developed countries. There is still a strong need to devise new mechanism-based treatments for heart failure. Numerous studies have suggested the importance of the Ca2+-dependent protease calpain in cardiac physiology and pathology. However, no drugs are currently under development or testing in human patients to target calpain for heart failure treatment. Herein the data demonstrate that inhibition of calpain activity protects against deleterious ultrastructural remodeling and cardiac dysfunction in multiple rodent models of heart failure, providing compelling evidence that calpain inhibition is a promising therapeutic strategy for heart failure treatment.

18.
Cell Rep ; 23(13): 3710-3720.e8, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949756

RESUMEN

Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca2+. Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Largo no Codificante/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Oxidación-Reducción , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia
19.
J Clin Invest ; 128(3): 1154-1163, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29457789

RESUMEN

SCN5A encodes the voltage-gated Na+ channel NaV1.5 that is responsible for depolarization of the cardiac action potential and rapid intercellular conduction. Mutations disrupting the SCN5A coding sequence cause inherited arrhythmias and cardiomyopathy, and single-nucleotide polymorphisms (SNPs) linked to SCN5A splicing, localization, and function associate with heart failure-related sudden cardiac death. However, the clinical relevance of SNPs that modulate SCN5A expression levels remains understudied. We recently generated a transcriptome-wide map of microRNA (miR) binding sites in human heart, evaluated their overlap with common SNPs, and identified a synonymous SNP (rs1805126) adjacent to a miR-24 site within the SCN5A coding sequence. This SNP was previously shown to reproducibly associate with cardiac electrophysiological parameters, but was not considered to be causal. Here, we show that miR-24 potently suppresses SCN5A expression and that rs1805126 modulates this regulation. We found that the rs1805126 minor allele associates with decreased cardiac SCN5A expression and that heart failure subjects homozygous for the minor allele have decreased ejection fraction and increased mortality, but not increased ventricular tachyarrhythmias. In mice, we identified a potential basis for this in discovering that decreased Scn5a expression leads to accumulation of myocardial reactive oxygen species. Together, these data reiterate the importance of considering the mechanistic significance of synonymous SNPs as they relate to miRs and disease, and highlight a surprising link between SCN5A expression and nonarrhythmic death in heart failure.


Asunto(s)
Insuficiencia Cardíaca/genética , MicroARNs/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Potenciales de Acción , Anciano , Alelos , Animales , Sitios de Unión , Muerte Súbita Cardíaca , Femenino , Perfilación de la Expresión Génica , Genotipo , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Homocigoto , Humanos , Desequilibrio de Ligamiento , Masculino , Ratones , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Polimorfismo de Nucleótido Simple , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA