Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257753

RESUMEN

TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in cell entry of respiratory viruses. To date, no inhibitors have been specifically developed toward this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling, uncovered important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further show the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights of their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.

2.
Angew Chem Int Ed Engl ; : e202405941, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110923

RESUMEN

The opioid crisis has highlighted the urgent need to develop non-opioid alternatives for managing pain, with an effective, safe, and non-addictive pharmacotherapeutic profile. Using an extensive structure-activity relationship approach, here we have identified a new series of highly selective neurotensin receptor type 2 (NTS2) macrocyclic compounds that exert potent, opioid-independent analgesia in various experimental pain models. To our knowledge, the constrained macrocycle in which the Ile12 residue of NT(7-12) was substituted by cyclopentylalanine, Pro7 and Pro10 were replaced by allyl-glycine followed by side-chain to side-chain cyclization is the most selective analog targeting NTS2 identified to date (Ki 2.9 nM), showing 30,000-fold selectivity over NTS1. Of particular importance, this macrocyclic analog is also able to potentiate the analgesic effects of morphine in a dose- and time-dependent manner. Exerting complementary analgesic actions via distinct mechanisms of nociceptive transmission, NTS2-selective macrocycles can therefore be exploited as opioid-free analgesics or as opioid-sparing therapeutics, offering superior pain relief with reduced adverse effects to pain patients.

3.
J Med Chem ; 67(15): 12969-12983, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39028865

RESUMEN

TMPRSS6 is a potential therapeutic target for the treatment of iron overload due to its role in regulating levels of hepcidin. Although potent TMPRSS6 inhibitors have been previously developed, their lack of specificity requires optimization to avoid potential side effects before pursuing preclinical development with in vivo models. Here, using computer-aided drug design based on a TMPRSS6 homology model, we reveal that the S2 position of TMPRSS6 offers a potential avenue to achieve selectivity against other members of the TTSP family. Accordingly, we synthesized novel peptidomimetic molecules containing lipophilic amino acids at the P2 position to exploit this unexplored pocket. This enabled us to identify TMPRSS6-selective small molecules with low nanomolar affinity. Finally, pharmacokinetic parameters were determined, and a compound was found to be potent in cellulo toward its primary target while retaining TTSP-subtype selectivity and showing no signs of alteration in in vitro TEER experiments.


Asunto(s)
Diseño de Fármacos , Proteínas de la Membrana , Peptidomiméticos , Serina Endopeptidasas , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/síntesis química , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Simulación por Computador , Simulación del Acoplamiento Molecular , Diseño Asistido por Computadora , Animales
4.
Oncotarget ; 15: 313-325, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753413

RESUMEN

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Tiazoles/farmacología , Antivirales/farmacología , Células HCT116 , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica
5.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507466

RESUMEN

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Asunto(s)
Distrofia Muscular de Duchenne , Nicho de Células Madre , Ratones , Animales , Apelina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Transducción de Señal
6.
Antiviral Res ; 225: 105869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548023

RESUMEN

SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.1. Here we report that human TMPRSS2 is a molecular determinant of viral entry for all the Omicron clinical isolates tested in human lung cells, including ancestral Omicron subvariants (BA.1, BA.2, BA.5), contemporary Omicron subvariants (BQ.1.1, XBB.1.5, EG.5.1) and currently circulating Omicron BA.2.86. First, we used a co-transfection assay to demonstrate the endoproteolytic cleavage by TMPRSS2 of spike Omicron subvariants. Second, we found that N-0385, a highly potent TMPRSS2 inhibitor, is a robust entry inhibitor of virus-like particles harbouring the S protein of Omicron subvariants. Third, we show that N-0385 exhibits nanomolar broad-spectrum antiviral activity against live Omicron subvariants in human Calu-3 lung cells and primary patient-derived bronchial epithelial cells. Interestingly, we found that N-0385 is 10-20 times more potent than the repositioned TMPRSS2 inhibitor, camostat, against BA.5, EG.5.1, and BA.2.86. We further found that N-0385 shows broad synergistic activity with clinically approved direct-acting antivirals (DAAs), i.e., remdesivir and nirmatrelvir, against Omicron subvariants, demonstrating the potential therapeutic benefits of a multi-targeted treatment based on N-0385 and DAAs.


Asunto(s)
Benzotiazoles , COVID-19 , Sulfonamidas , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales , SARS-CoV-2 , Serina Endopeptidasas
7.
J Med Chem ; 67(5): 3711-3726, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417040

RESUMEN

Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.


Asunto(s)
Membranas Artificiales , Agua , Permeabilidad , Permeabilidad de la Membrana Celular , Difusión
8.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257256

RESUMEN

Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3ß-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-ß) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-ß-diastereoisomers may have more specific antibacterial action than C3-α.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Tomatina/análogos & derivados , Antibacterianos/farmacología , Adenosina Trifosfato
9.
ChemMedChem ; 19(2): e202300458, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37864572

RESUMEN

Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from µM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Inhibidores de Serina Proteinasa/farmacología , Virus de la Influenza A/fisiología , Serina Proteasas/metabolismo , Gripe Humana/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Replicación Viral
10.
Inorg Chem ; 62(49): 19821-19837, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37988596

RESUMEN

Two complementary procedures are presented to prepare cis-pyridyl-iridium(III) emitters of the class [3b+3b+3b'] with two orthometalated ligands of the 2-phenylpyridine type (3b) and a third ligand (3b'). They allowed to obtain four emitters of this class and to compare their properties with those of the trans-pyridyl isomers. The finding starts from IrH5(PiPr3)2, which reacts with 2-(p-tolyl)pyridine to give fac-[Ir{κ2-C,N-[C6MeH3-py]}3] with an almost quantitative yield. Stirring the latter in the appropriate amount of a saturated solution of HCl in toluene results in the cis-pyridyl adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} stabilized with p-tolylpyridinium chloride, which can also be transformed into dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2. Adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} directly generates cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-Isoqui]}] and cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-py]}] by transmetalation from Li[2-(isoquinolin-1-yl)-C6H4] and Li[py-2-C6H4]. Dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2 is also a useful starting complex when the precursor molecule of 3b' has a fairly acidic hydrogen atom, suitable for removal by hydroxide groups. Thus, its reactions with 2-picolinic acid and acetylacetone (Hacac) lead to cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,N-[OC(O)-py]} and cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,O-[acac]}. The stereochemistry of the emitter does not significantly influence the emission wavelengths. On the contrary, its efficiency is highly dependent on and associated with the stability of the isomer. The more stable isomer shows a higher quantum yield and color purity.

11.
Eur J Med Chem ; 262: 115886, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924710

RESUMEN

Antibiotic resistance is escalating alarmingly worldwide. Bacterial resistance mechanisms are surfacing and proliferating across the globe, jeopardizing our capacity to manage prevalent infectious illnesses. Without drastic measures, we risk entering a post-antibiotic era, where even trivial infections and injuries can cause death again. In this context, we have developed a new class of antibiotics based on tomatidine (TO), a natural product derived from tomato plants, with a novel mode of action by targeting bacterial ATP synthases. The first generation of compounds proved highly specific for small-colony variants (SCVs) of Staphylococcus aureus. However, optimization of this scaffold through extensive structure-activity relationship studies has enabled us to broaden its effectiveness to include both Gram-positive and Gram-negative bacteria. Notably, the results showed that specific C3-modification of TO could improve ATP synthase inhibition and also bypass the outer membrane barrier of Gram-negative bacteria to gain substantial growth inhibition including against multi-resistant strains.


Asunto(s)
Antibacterianos , Jardines , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Adenosina Trifosfato
12.
Antibiotics (Basel) ; 12(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627764

RESUMEN

Staphylococcus aureus is one of the major pathogens causing bovine mastitis, and antibiotic treatment is most often inefficient due to its virulence and antibiotic-resistance attributes. The development of new antibiotics for veterinary use should account for the One Health concept, in which humans, animals, and environmental wellbeing are all interconnected. S. aureus can infect cattle and humans alike and antibiotic resistance can impact both if the same classes of antibiotics are used. New effective antibiotic classes against S. aureus are thus needed in dairy farms. We previously described PC1 as a novel antibiotic, which binds the S. aureus guanine riboswitch and interrupts transcription of essential GMP synthesis genes. However, chemical instability of PC1 hindered its development, evaluation, and commercialization. Novel PC1 analogs with improved stability have now been rationally designed and synthesized, and their in vitro and in vivo activities have been evaluated. One of these novel compounds, PC206, remains stable in solution and demonstrates specific narrow-spectrum activity against S. aureus. It is active against biofilm-embedded S. aureus, its cytotoxicity profile is adequate, and in vivo tests in mice and cows show that it is effective and well tolerated. PC206 and structural analogs represent a promising new antibiotic class to treat S. aureus-induced bovine mastitis.

13.
Emerg Microbes Infect ; 12(2): 2246594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555275

RESUMEN

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , SARS-CoV-2
14.
Front Cardiovasc Med ; 10: 1191891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636297

RESUMEN

Introduction: Peripheral arterial disease (PAD) is a major risk factor for lower-extremity amputation in diabetic patients. Unfortunately, previous clinical studies investigating therapeutic angiogenesis using the vascular endothelial growth factor (VEGF) have shown disappointing results in diabetic patients, which evokes the necessity for novel therapeutic agents. The apelinergic system (APJ receptor/apelin) is highly upregulated under hypoxic condition and acts as an activator of angiogenesis. Apelin treatment improves revascularization in nondiabetic models of ischemia, however, its role on angiogenesis in diabetic conditions remains poorly investigated. This study explored the impact of Pyr-apelin-13 in endothelial cell function and diabetic mouse model of hindlimb ischemia. Methods: Nondiabetic and diabetic mice underwent femoral artery ligation to induce limb ischemia. Diabetic mice were implanted subcutaneously with osmotic pumps delivering Pyr-apelin-13 for 28 days. Blood flow reperfusion was measured for 4 weeks post-surgery and exercise willingness was assessed with voluntary wheels. In vitro, bovine aortic endothelial cells (BAECs) were exposed to normal (NG) or high glucose (HG) levels and hypoxia. Cell migration, proliferation and tube formation assays were performed following either VEGF or Pyr-apelin-13 stimulation. Results and Discussion: Following limb ischemia, blood flow reperfusion, functional recovery of the limb and vascular density were improved in diabetic mice receiving Pyr-apelin-13 compared to untreated diabetic mice. In cultured BAECs, exposure to HG concentrations and hypoxia reduced VEGF proangiogenic actions, whereas apelin proangiogenic effects remained unaltered. Pyr-apelin-13 induced its proangiogenic actions through Akt/AMPK/eNOS and RhoA/ROCK signaling pathways under both NG or HG concentrations and hypoxia exposure. Our results identified the apelinergic system as a potential therapeutic target for angiogenic therapy in diabetic patients with PAD.

15.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446619

RESUMEN

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Asunto(s)
Alcaloides , Salud Poblacional , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
16.
Biochim Biophys Acta Biomembr ; 1865(7): 184196, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37400050

RESUMEN

Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Conformación Molecular , Permeabilidad , Tirosina
17.
Free Radic Biol Med ; 206: 111-124, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385568

RESUMEN

An excessive blood level of homocysteine (HcySH) is associated with numerous cardiovascular and neurodegenerative disease conditions. It has been suggested that direct S-homocysteinylation, of proteins by HcySH, or N-homosteinylation by homocysteine thiolactone (HTL) could play a causative role in these maladies. In contrast, ascorbic acid (AA) plays a significant role in oxidative stress prevention. AA is oxidized to dehydroascorbic acid (DHA) and if not rapidly reduced back to AA may degrade to reactive carbonyl products. In the present work, DHA is shown to react with HTL to produce a spiro bicyclic ring containing a six-membered thiazinane-carboxylic acid moiety. This reaction product is likely formed by initial imine condensation and subsequent hemiaminal product followed by HTL ring opening and intramolecular nucleophilic attack of the resulting thiol anion to form the spiro product. The reaction product was determined to have an accurate mass of 291.0414 and a molecular composition C10H13NO7S containing five double bond equivalents. We structurally characterized the reaction product using a combination of accurate mass tandem mass spectrometry, 1D and 2D-nuclear magnetic resonance. We also demonstrated that formation of the reaction product prevented peptide and protein N-homocysteinylation by HTL using a model peptide and α-lactalbumin. Furthermore, the reaction product is formed in Jurkat cells when exposed to HTL and DHA.


Asunto(s)
Ácido Deshidroascórbico , Enfermedades Neurodegenerativas , Humanos , Péptidos , Homocisteína
19.
Inorg Chem ; 62(9): 3847-3859, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36802562

RESUMEN

The organic molecule 2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(1-phenyl-1-(pyridin-2-yl)ethyl)phenyl)pyridine (H3L) has been designed, prepared, and employed to synthesize the encapsulated-type pseudo-tris(heteroleptic) iridium(III) derivative Ir(κ6-fac-C,C',C″-fac-N,N',N″-L). Its formation takes place as a result of the coordination of the heterocycles to the iridium center and the ortho-CH bond activation of the phenyl groups. Dimer [Ir(µ-Cl)(η4-COD)]2 is suitable for the preparation of this compound of class [Ir(9h)] (9h = 9-electron donor hexadentate ligand), but Ir(acac)3 is a more appropriate starting material. Reactions were carried out in 1-phenylethanol. In contrast to the latter, 2-ethoxyethanol promotes the metal carbonylation, inhibiting the full coordination of H3L. Complex Ir(κ6-fac-C,C',C″-fac-N,N',N″-L) is a phosphorescent emitter upon photoexcitation, which has been employed to fabricate four yellow emitting devices with 1931 CIE (x:y) ∼ (0.52:0.48) and a maximum wavelength at 576 nm. These devices display luminous efficacies, external quantum efficiencies, and power efficacies at 600 cd m-2, which lie in the ranges 21.4-31.3 cd A-1, 7.8-11.3%, and 10.2-14.1 lm W1-, respectively, depending on the device configuration.

20.
Mol Pharm ; 20(3): 1577-1590, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36781165

RESUMEN

To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 µM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.


Asunto(s)
Peptoides , Humanos , Citosol/metabolismo , Guanidina , Células HeLa , Peptoides/metabolismo , Células CACO-2 , Células HEK293 , Endocitosis , Endosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA