Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Exp Med ; 221(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38563819

The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.


Multiple Sclerosis , Neoplasms , Animals , Mice , CD4-Positive T-Lymphocytes , NF-kappa B , Signal Transduction , Tumor Microenvironment , Proto-Oncogene Proteins c-rel/metabolism
2.
Front Immunol ; 15: 1379777, 2024.
Article En | MEDLINE | ID: mdl-38504985

CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.


Neoplasms , Virus Diseases , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/metabolism , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Virus Diseases/metabolism
3.
Microorganisms ; 10(11)2022 Oct 22.
Article En | MEDLINE | ID: mdl-36363693

To achieve the World Health Organization's (WHO) goals of eradicating viral hepatitis globally by 2030, the regional prevalence and epidemiology of hepatitis B virus (HBV) and hepatitis delta virus (HDV) coinfection must be known in order to implement preventiveon and treatment strategies. HBV/HDV coinfection is considered the most severe form of vira l hepatitis due to it's rapid progression towards cirrhosis, hepatocellular carcinoma, and liver-related death. The role of simplified diagnosticsis tools for screening and monitoring HBV/HDV-coinfected patients is crucial. Many sophisticated tools for diagnoses have been developed for detection of HBV alone as well as HBV/HDV coinfection. However, these advanced techniques are not widely available in low-income countries and there is no standardization for HDV detection assays, which are used for monitoring the response to antiviral therapy. More accessible and affordable alternative methods, such as rapid diagnostic tests (RDTs), are being developed and validated for equipment-free and specific detection of HBV and HDV. This review will provide some insight into both existing and diagnosis tools under development, their applicability in developing countries and how they could increase screening, patient monitoring and treatment eligibility.

...