Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Aging Dis ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38300640

The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.

2.
Front Neurol ; 14: 1205426, 2023.
Article En | MEDLINE | ID: mdl-37602266

Purpose: Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods: Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results: ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion: C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.

3.
J Gerontol A Biol Sci Med Sci ; 78(12): 2214-2221, 2023 12 01.
Article En | MEDLINE | ID: mdl-37555749

The brainstem functions as a relay and integrative brain center and plays an essential role in motor function. Whether brainstem tissue deterioration, including demyelination, affects motor function has not been studied. Understanding the potential relationship between brainstem demyelination and motor function may be useful for the early diagnosis of neurodegenerative diseases and to understand age-related gait impairments that have no apparent cause. In this work, we investigated the associations between rapid or usual gait speeds, as integrative measures of motor function, and cerebral myelin content. In 118 individuals (age 22-94 years) free of neurodegenerative diseases or cognitive impairment, myelin content was assessed as the myelin water fraction, a direct magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), which are sensitive magnetic resonance imaging measures of myelin content. Our results indicate that participants with lower usual or rapid gait speed exhibited lower values of myelin water fraction and R1 in the main brainstem regions, which were more evident and statistically significant in the midbrain. In contrast, we found no significant associations between gait speeds and R2, an expected result because various physiological factors confound R2. These original findings provide evidence that the level of brainstem myelination may affect gait performance among cognitively unimpaired adults who are free from any clinically detectable neurodegenerative diseases. Further studies are needed to understand the longitudinal changes in brainstem myelination with aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.


Demyelinating Diseases , Neurodegenerative Diseases , Humans , Aged , Aged, 80 and over , Walking Speed , Brain , Brain Stem/diagnostic imaging , Aging , Magnetic Resonance Imaging/methods , Water
4.
Comput Med Imaging Graph ; 108: 102282, 2023 09.
Article En | MEDLINE | ID: mdl-37586261

Changes in myelination are a cardinal feature of brain development and the pathophysiology of several central nervous system diseases, including multiple sclerosis and dementias. Advanced magnetic resonance imaging (MRI) methods have been developed to probe myelin content through the measurement of myelin water fraction (MWF). However, the prolonged data acquisition and post-processing times of current MWF mapping methods pose substantial hurdles to their clinical implementation. Recently, fast steady-state MRI sequences have been implemented to produce high-spatial resolution whole-brain MWF mapping within ∼20 min. Despite the subsequent significant advances in the inversion algorithm to derive MWF maps from steady-state MRI, the high-dimensional nature of such inversion does not permit further reduction of the acquisition time by data under-sampling. In this work, we present an unprecedented reduction in the computation (∼30 s) and the acquisition time (∼7 min) required for whole-brain high-resolution MWF mapping through a new Neural Network (NN)-based approach, named NN-Relaxometry of Extremely Under-SamplEd Data (NN-REUSED). Our analyses demonstrate virtually similar accuracy and precision in derived MWF values using NN-REUSED compared to results derived from the fully sampled reference method. The reduction in the acquisition and computation times represents a breakthrough toward clinically practical MWF mapping.


Myelin Sheath , Water , Myelin Sheath/pathology , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer
5.
Hypertension ; 80(8): 1728-1738, 2023 08.
Article En | MEDLINE | ID: mdl-37283066

BACKGROUND: It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS: Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS: After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS: These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.


Hypertension , White Matter , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Anisotropy , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Hypertension/diagnostic imaging , Hypertension/pathology , Longitudinal Studies , Magnetic Resonance Imaging/methods , Myelin Sheath/pathology , Water , White Matter/diagnostic imaging , White Matter/pathology , Male , Female
6.
Front Neurol ; 14: 1170457, 2023.
Article En | MEDLINE | ID: mdl-37181577

Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.

7.
J Gerontol A Biol Sci Med Sci ; 78(8): 1339-1347, 2023 08 02.
Article En | MEDLINE | ID: mdl-36879434

Mounting evidence indicates that abnormal gait speed predicts the progression of neurodegenerative diseases, including Alzheimer's disease. Understanding the relationship between white matter integrity, especially myelination, and motor function is crucial to the diagnosis and treatment of neurodegenerative diseases. We recruited 118 cognitively unimpaired adults across an extended age range of 22-94 years to examine associations between rapid or usual gait speeds and cerebral myelin content. Using our advanced multicomponent magnetic resonance relaxometry method, we measured myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive but nonspecific magnetic resonance imaging measures of myelin content. After adjusting for covariates and excluding 22 data sets due to cognitive impairments or artifacts, our results indicate that participants with higher rapid gait speed exhibited higher MWF, R1, and R2 values, that is, higher myelin content. These associations were statistically significant within several white matter brain regions, particularly the frontal and parietal lobes, splenium, anterior corona radiata, and superior fronto-occipital and longitudinal fasciculus. In contrast, we did not find any significant associations between usual gait speed and MWF, R1, or R2, which suggests that rapid gait speed may be a more sensitive marker of demyelination than usual gait speed. These findings advance our understanding on the implication of myelination in gait impairment among cognitively unimpaired adults, providing further evidence of the interconnection between white matter integrity and motor function.


Neurodegenerative Diseases , White Matter , Humans , Aged , Aged, 80 and over , Myelin Sheath/pathology , Walking Speed , Brain/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods
8.
Ann Clin Transl Neurol ; 10(3): 397-407, 2023 03.
Article En | MEDLINE | ID: mdl-36762407

OBJECTIVE: White matter damage is a feature of Alzheimer's disease, yet little is known about how facets of the Alzheimer's disease process relate to key features of white matter structure. We examined the association of Alzheimer's disease (Aß42/40 ratio; pTau181), neuronal injury (NfL), and reactive astrogliosis (GFAP) biomarkers with MRI measures of myelin content and axonal density. METHODS: Among cognitively normal participants in the BLSA and GESTALT studies who received MRI measures of myelin content (defined by myelin water fraction [MWF]) and axonal density (defined by neurite density index [NDI]), we quantified plasma levels of Aß42 , Aß40 , pTau181, NfL, and GFAP. Linear regression models adjusted for demographic variables were used to relate these plasma biomarker levels to the MRI measures. RESULTS: In total, 119 participants received MWF imaging (age: 56 [SD 21]), of which 43 received NDI imaging (age: 50 [SD 18]). We found no relationship between plasma biomarkers and total brain myelin content. However, secondary analysis found higher GFAP was associated with lower MWF in the temporal lobes (ß = -0.13; P = 0.049). Further, higher levels of NfL (ß = -0.22; P = 0.009) and GFAP (ß = -0.29; P = 0.002) were associated with lower total brain axonal density. Secondary analyses found lower Aß42/40 ratio and higher pTau181 were also associated with lower axonal density, but only in select brain regions. These results remained similar after additionally adjusting for cardiovascular risk factors. INTERPRETATION: Plasma biomarkers of neuronal injury and astrogliosis are associated with reduced axonal density and region-specific myelin content. Axonal loss and demyelination may co-occur with neurodegeneration and astrogliosis ahead of clinically meaningful cognitive decline.


Alzheimer Disease , Myelin Sheath , Humans , Middle Aged , Gliosis , Magnetic Resonance Imaging/methods , Aging , Biomarkers
9.
Neurobiol Aging ; 124: 104-116, 2023 04.
Article En | MEDLINE | ID: mdl-36641369

The relationship between brain microstructure and aging has been the subject of intense study, with diffusion MRI perhaps the most effective modality for elucidating these associations. Here, we used the mean apparent propagator (MAP)-MRI framework, which is suitable to characterize complex microstructure, to investigate age-related cerebral differences in a cohort of cognitively unimpaired participants and compared the results to those derived using diffusion tensor imaging. We studied MAP-MRI metrics, among them the non-Gaussianity (NG) and propagator anisotropy (PA), and established an opposing pattern in white matter of higher NG alongside lower PA among older adults, likely indicative of axonal degradation. In gray matter, however, these two indices were consistent with one another, and exhibited regional pattern heterogeneity compared to other microstructural parameters, which could indicate fewer neuronal projections across cortical layers along with an increased glial concentration. In addition, we report regional variations in the magnitude of age-related microstructural differences consistent with the posterior-anterior shift in aging paradigm. These results encourage further investigations in cognitive impairments and neurodegeneration.


White Matter , Humans , Aged , White Matter/diagnostic imaging , Longevity , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , Aging , Gray Matter/diagnostic imaging , Brain/diagnostic imaging
10.
Alzheimers Dement ; 19(7): 3098-3107, 2023 07.
Article En | MEDLINE | ID: mdl-36720000

INTRODUCTION: The influence of myelination on longitudinal changes in cognitive performance remains unclear. METHODS: For each participant (N = 123), longitudinal cognitive scores were calculated. Myelin content was probed using myelin water fraction (MWF) or longitudinal relaxation rate (R1 ); both are MRI measures sensitive to myelin, with MWF being specific. RESULTS: Lower MWF was associated with steeper declines in executive function (p < .02 in all regions) and lower R1 was associated with steeper declines in verbal fluency (p < .03 in all regions). Additionally, lower R1 was associated with steeper declines in executive function (p < .02 in all regions) and memory (p < .04 in occipital and cerebral white matter) but did not survive Bonferroni correction. DISCUSSION: We demonstrate significant relationships between myelin content and the rates of change in cognitive performance among cognitively normal individuals. These findings highlight the importance of myelin in cognitive functioning and suggest MWF and R1 as imaging biomarkers to predict cognitive changes.


Cognitive Dysfunction , White Matter , Humans , Myelin Sheath , Cognition , Executive Function , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Brain
11.
J Magn Reson Imaging ; 58(1): 284-293, 2023 Jul.
Article En | MEDLINE | ID: mdl-36326302

BACKGROUND: Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE: To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE: Cross sectional. POPULATION: A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE: A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT: Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS: Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS: R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION: These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 4.


Diffusion Tensor Imaging , White Matter , Adult , Male , Humans , Young Adult , Middle Aged , Aged , Aged, 80 and over , Diffusion Tensor Imaging/methods , Bayes Theorem , Cross-Sectional Studies , Magnetic Resonance Imaging , Aging , Water , Cerebrovascular Circulation/physiology , Spin Labels , White Matter/diagnostic imaging
12.
Sci Rep ; 12(1): 20194, 2022 11 23.
Article En | MEDLINE | ID: mdl-36418516

We present a new regularization method for the solution of the Fredholm integral equation (FIE) of the first kind, in which we incorporate solutions corresponding to a range of Tikhonov regularizers into the end result. This method identifies solutions within a much larger function space, spanned by this set of regularized solutions, than is available to conventional regularization methods. An additional key development is the use of dictionary functions derived from noise-corrupted inversion of the discretized FIE. In effect, we combine the stability of solutions with greater degrees of regularization with the resolution of those that are less regularized. The span of regularizations (SpanReg) method may be widely applicable throughout the field of inverse problems.


Algorithms , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging
13.
Front Endocrinol (Lausanne) ; 13: 984929, 2022.
Article En | MEDLINE | ID: mdl-36313760

The choroid plexus (CP) is a cerebral structure located in the ventricles that functions in producing most of the brain's cerebrospinal fluid (CSF) and transporting proteins and immune cells. Alterations in CP structure and function has been implicated in several pathologies including aging, multiple sclerosis, Alzheimer's disease, and stroke. However, identification of changes in the CP remains poorly characterized in obesity, one of the main risk factors of neurodegeneration, including in the absence of frank central nervous system alterations. Our goal here was to characterize the association between obesity, measured by the body mass index (BMI) or waist circumference (WC) metrics, and CP microstructure and volume, assessed using advanced magnetic resonance imaging (MRI) methodology. This cross-sectional study was performed in the clinical unit of the National Institute on Aging and included a participant population of 123 cognitively unimpaired individuals spanning the age range of 22 - 94 years. Automated segmentation methods from FreeSurfer were used to identify the CP structure. Our analysis included volumetric measurements, quantitative relaxometry measures (T 1 and T 2), and the diffusion tensor imaging (DTI) measure of mean diffusivity (MD). Strong positive associations were observed between WC and all MRI metrics, as well as CP volume. When comparing groups based on the established cutoff point by the National Institutes of Health for WC, a modest difference in MD and a significant difference in T 1 values were observed between obese and lean individuals. We also found differences in T1 and MD between obese and overweight individuals as defined using the BMI cutoff. We conjecture that these observations in CP volume and microstructure are due to obesity-induced inflammation, diet, or, very likely, dysregulations in leptin binding and transport. These findings demonstrate that obesity is strongly associated with a decline in CP microstructural integrity. We expect that this work will lay the foundation for further investigations on obesity-induced alterations in CP structure and function.


Adiposity , Choroid Plexus , United States , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Adiposity/physiology , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Diffusion Tensor Imaging , Cross-Sectional Studies , Obesity/complications
14.
JAMA Netw Open ; 5(9): e2231189, 2022 09 01.
Article En | MEDLINE | ID: mdl-36094503

Importance: Decreased cerebral tissue integrity and cerebral blood flow (CBF) are features of neurodegenerative diseases. Brain tissue maintenance is an energy-demanding process, making it particularly sensitive to hypoperfusion. However, little is known about the association between blood flow and brain microstructural integrity, including in normative aging. Objective: To assess associations between CBF and changes in cerebral tissue integrity in white matter and gray matter brain regions. Design, Setting, and Participants: In this longitudinal cohort study, magnetic resonance imaging was performed on 732 healthy adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective longitudinal study (baseline age of 18-30 years) that examined participants up to 8 times during 30 years (1985-1986 to 2015-2016). Cerebral blood flow was measured at baseline (year 25 of the CARDIA study), and changes in diffusion tensor indices of fractional anisotropy (FA) and mean diffusivity (MD), measures of microstructural tissue integrity, were measured at both baseline and after approximately 5 years of follow-up (year 30). Analyses were conducted from November 5, 2020, to January 29, 2022. Main Outcomes and Measures: Automated algorithms and linear mixed-effects statistical models were used to evaluate the associations between CBF at baseline and changes in FA or MD. Results: After exclusion of participants with missing or low-quality data, 654 at baseline (342 women; mean [SD] age, 50.3 [3.5] years) and 433 at follow-up (230 women; mean [SD] age, 55.1 [3.5] years) were scanned for CBF or FA and MD imaging. In the baseline cohort, 247 participants were Black (37.8%) and 394 were White (60.2%); in the follow-up cohort, 156 were Black (36.0%) and 277 were White (64.0%). Cross-sectionally, FA and MD were associated with CBF in most regions evaluated, with lower CBF values associated with lower FA or higher MD values, including the frontal white matter lobes (for CBF and MD: mean [SE] ß = -1.4 [0.5] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and the parietal white matter lobes (for CBF and MD: mean [SE] ß = -2.4 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Lower CBF values at baseline were also significantly associated with steeper regional decreases in FA or increases in MD in most brain regions investigated, including the frontal (for CBF and MD: mean [SE] ß = -1.1 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and parietal lobes (for CBF and MD: mean [SE] ß = -1.5 [0.7] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Conclusions and Relevance: Results of this longitudinal cohort study of the association between CBF and diffusion tensor imaging metrics suggest that blood flow may be significantly associated with brain tissue microstructure. This work may lay the foundation for investigations to clarify the nature of early brain damage in neurodegeneration. Such studies may lead to new neuroimaging biomarkers of brain microstructure and function for disease progression.


Coronary Vessels , Diffusion Tensor Imaging , Adolescent , Adult , Cerebrovascular Circulation/physiology , Diffusion Tensor Imaging/methods , Female , Humans , Longitudinal Studies , Middle Aged , Prospective Studies , Young Adult
15.
Magn Reson Chem ; 60(11): 1076-1086, 2022 11.
Article En | MEDLINE | ID: mdl-35593385

Many methods have been developed for estimating the parameters of biexponential decay signals, which arise throughout magnetic resonance relaxometry (MRR) and the physical sciences. This is an intrinsically ill-posed problem so that estimates can depend strongly on noise and underlying parameter values. Regularization has proven to be a remarkably efficient procedure for providing more reliable solutions to ill-posed problems, while, more recently, neural networks have been used for parameter estimation. We re-address the problem of parameter estimation in biexponential models by introducing a novel form of neural network regularization which we call input layer regularization (ILR). Here, inputs to the neural network are composed of a biexponential decay signal augmented by signals constructed from parameters obtained from a regularized nonlinear least-squares estimate of the two decay time constants. We find that ILR results in a reduction in the error of time constant estimates on the order of 15%-50% or more, depending on the metric used and signal-to-noise level, with greater improvement seen for the time constant of the more rapidly decaying component. ILR is compatible with existing regularization techniques and should be applicable to a wide range of parameter estimation problems.


Algorithms , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
16.
Sci Rep ; 12(1): 5773, 2022 04 06.
Article En | MEDLINE | ID: mdl-35388008

Analysis of multiexponential decay has remained a topic of active research for over 200 years. This attests to the widespread importance of this problem and to the profound difficulties in characterizing the underlying monoexponential decays. Here, we demonstrate the fundamental improvement in stability and conditioning of this classic problem through extension to a second dimension; we present statistical analysis, Monte-Carlo simulations, and experimental magnetic resonance relaxometry data to support this remarkable fact. Our results are readily generalizable to higher dimensions and provide a potential means of circumventing conventional limits on multiexponential parameter estimation.


Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Monte Carlo Method
17.
Neuroimage ; 251: 118988, 2022 05 01.
Article En | MEDLINE | ID: mdl-35150834

Mounting evidence indicates that myelin breakdown may represent an early phenomenon in neurodegeneration, including Alzheimer's disease (AD). Understanding the factors influencing myelin synthesis and breakdown will be essential for the development and evaluation of therapeutic interventions. In this work, we assessed associations between genetic variance in apolipoprotein E (APOE) and cerebral myelin content. Quantitative magnetic resonance imaging (qMRI) was performed on a cohort of 92 cognitively unimpaired adults ranging in age from 24 to 94 years. We measured whole-brain myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive measures of myelin content, in carriers of the APOE ε4 or APOE ε2 alleles and individuals with the ε33 genotype. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between MWF or relaxation rates and APOE isoforms, accounting for confounding variables including age, sex, and race, in several cerebral structures. Our results indicate that carriers of APOE ε2 exhibited significantly higher myelin content, that is, higher MWF, R1 or R2 values, in most brain regions investigated as compared to noncarriers, while ε4 carriers exhibited trends toward lower myelin content compared to noncarriers. Finally, all qMRI metrics exhibited quadratic, inverted U-shape, associations with age; attributed to the development of myelination from young to middle age followed by progressive loss of myelin afterwards. Sex and race effects on myelination were, overall, nonsignificant. These findings suggest that individual genetic background may influence cerebral myelin maintenance. Although preliminary, this work lays the foundation for further investigations to clarify the relationship between APOE genotype and myelination, which may suggest potential targets in treatment or prevention of AD.


Alzheimer Disease , Myelin Sheath , Adult , Aged , Aged, 80 and over , Aging/genetics , Aging/metabolism , Alleles , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Brain/diagnostic imaging , Brain/metabolism , Genotype , Humans , Middle Aged , Myelin Sheath/metabolism , Young Adult
19.
Magn Reson Imaging ; 85: 87-92, 2022 01.
Article En | MEDLINE | ID: mdl-34678436

Axonal demyelination is a cardinal feature of aging and age-related diseases. The g-ratio, mathematically defined as the inner-to-outer diameter of a myelinated axon, is used as a structural index of optimal axonal myelination and has been shown to represent a sensitive imaging biomarker of microstructural integrity. Several magnetic resonance imaging (MRI) methods for whole-brain mapping of aggregate g-ratio have been introduced. Computation of the aggerate g-ratio requires estimates of the myelin volume fraction (MVF) and the axonal volume fraction (AVF). While accurate determinations of MVF and AVF can be obtained through multicomponent relaxometry or diffusion analyses, respectively, these methods require lengthy acquisition times making their implementation challenging in a clinical context. Therefore, any attempt to overcome this drawback is needed. Expanding on our previous work, we introduced a new MRI method for whole-brain mapping of aggregate g-ratio. This new approach is based on the use of a single-shell diffusion for AVF determination, reducing the acquisition time by approximately ~10 min from our recently introduced approach, while offering the possibility to investigate g-ratio differences in previous studies with existing data for MVF mapping and single-shell diffusion data for AVF mapping. Our comparison analysis indicates that our newly derived aggregate g-ratio values were similar to those derived from our previous method, which requires a longer acquisition time. Further, in agreement with our previous observations, we found quadratic U-shaped relationships between aggregate g-ratio and age in this much larger study cohort. However, our results show that sexual dimorphism in g-ratio was not significant in any brain region investigated.


Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , White Matter/diagnostic imaging , White Matter/pathology
20.
Neuroimage ; 247: 118727, 2022 02 15.
Article En | MEDLINE | ID: mdl-34813969

White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.


Diffusion Tensor Imaging , White Matter/pathology , Adult , Aged , Aged, 80 and over , Aging , Brain Mapping , Cohort Studies , Female , Humans , Longevity , Male , Middle Aged , Myelin Sheath/pathology , Young Adult
...