Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
APL Bioeng ; 8(2): 026109, 2024 Jun.
Article En | MEDLINE | ID: mdl-38706957

During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.

2.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 May 13.
Article En | MEDLINE | ID: mdl-38593061

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Elastic Modulus , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Vibrio cholerae/physiology , Escherichia coli/physiology , Escherichia coli/drug effects , Finite Element Analysis , Cell Membrane/physiology , Cell Membrane/drug effects , Cell Wall/drug effects
3.
J Biomech ; 162: 111882, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070296

Tissue-engineered osteochondral implants manufactured from condensed mesenchymal stem cell bodies have shown promise for treating focal cartilage defects. Notably, such manufacturing techniques have shown to successfully recapture the bulk mechanical properties of native cartilage. However, the relationships among the architectural features, local composition, and micromechanical environment within tissue-engineered cartilage from cell-based aggregates remain unclear. Understanding such relationships is crucial for identifying critical parameters that can predict in vivo performance. Therefore, this study investigated the relationship among architectural features, composition, and micromechanical behavior of tissue-engineered osteochondral implants. We utilized fast-confocal microscopy combined with a strain mapping technique to analyze the micromechanical behavior under quasi-static loading, as well as Fourier Transform Infrared Spectroscopy to analyze the local compositions. More specifically, we investigated the architectural features and compositional distributions generated from tissue maturation, along with macro- and micro-level strain distributions. Our results showed that under compression, cell-based aggregates underwent deformation followed by body movement, generating high local strain around the boundaries, where local aggrecan concentration was low and local collagen concentration was high. By analyzing the micromechanics and composition at the single aggregate length scale, we identified a strong threshold relationship between local strain and compositions. Namely at the aggrecan concentration below 0.015 arbitrary unit (A.U.) and the collagen concentration above 0.15 A.U., the constructs experienced greater than threefold increase in compressive strain. Overall, this study suggests that local compositional features are the primary driver of the local mechanical environment in tissue-engineered cartilage constructs, providing insight into potential quality control parameters for manufacturing tissue-engineered constructs.


Cartilage, Articular , Tissue Engineering , Aggrecans , Tissue Engineering/methods , Cartilage , Prostheses and Implants , Collagen , Chondrocytes , Tissue Scaffolds/chemistry
4.
PLoS Biol ; 21(8): e3002209, 2023 08.
Article En | MEDLINE | ID: mdl-37527210

The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.


Biofilms , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Mucus , Lung
5.
J Biomech ; 152: 111591, 2023 05.
Article En | MEDLINE | ID: mdl-37088031

Tissue-engineered cartilage constructs have shown promise to treat focal cartilage defects in multiple clinical studies. Notably, products in clinical use or in late-stage clinical trials often utilize porous collagen scaffolds to provide mechanical support and attachment sites for chondrocytes. Under loading, both the local mechanical responses of collagen scaffolds and the corresponding cellular outcomes are poorly understood, despite their wide use. As such, the architecture of collagen scaffolds varies significantly among tissue-engineered cartilage products, but the effects of such architectures on construct mechanics and cell viability are not well understood. This study investigated the effects of local mechanical responses of collagen scaffolds on chondrocyte viability in tissue-engineered cartilage constructs. We utilized fast confocal microscopy combined with a strain mapping technique to analyze the architecture-dependent instabilities under quasi-static loading and subsequent chondrocyte death in honeycomb and sponge scaffolds. More specifically, we compared the isotropic and the orthotropic planes for each type of collagen scaffold. Under compression, both planes exhibited elastic, buckled, and densified deformation modes. In both loading directions, cell death was minimal in regions that experienced elastic deformation mode and a trend of increase in buckled mode. More interestingly, we saw a significant increase in cell death in densified mode. Overall, this study suggests that local instabilities are directly correlated to chondrocyte death in tissue-engineered cartilage constructs, highlighting the importance of understanding the architecture-dependent local mechanical responses under loading.


Cartilage , Tissue Engineering , Tissue Scaffolds , Animals , Cattle , Weight-Bearing , Cell Death , Elasticity
6.
Acta Biomater ; 163: 78-90, 2023 06.
Article En | MEDLINE | ID: mdl-35835288

Collagen fibrils, which are the lowest level fibrillar unit of organization of collagen, are thus of primary interest towards understanding the mechanical behavior of load-bearing soft tissues. The deformation of collagen fibrils shows unique mechanical features; namely, their high energy dissipation is even superior compared to most engineering materials. Additionally, there are indications that cyclic loading can further improve the toughness of collagen fibrils. Recent experiments from Liu at al. (2018) focused on the response of type I collagen fibrils to uniaxial cyclic loading, revealing some interesting results regarding their rate-dependent and inelastic response. In this work, we aim to develop a model that allows interpreting the complex nonlinear and inelastic response of collagen fibrils under cyclic loading. We propose a constitutive model that accounts for viscoelastic deformations through a decoupled strain-energy density function (into an elastic and a viscous parts), and for plastic deformations through plastic evolution laws. The stress-stretch response results obtained using this constitutive law showed good agreement with experimental data over complex loading paths. Ultimately we use the model to gain more insights on how cyclic loading and rate effects control the interplay between viscoelastic and plastic deformation in collagen fibrils, and to extrapolate the results from experimental data, analyzing how complex cyclic load influences energy dissipation and deformation mechanisms. STATEMENT OF SIGNIFICANCE: In this work, we develop a viscoelastic-plastic constitutive model for collagen fibrils with the aim of analyzing the effects of inelasticity and energy dissipation in this material, and more specifically the competition between viscoelasticity and plasticity in the context of cyclic loading and overload. Experimental and theoretical approaches so far have not fully clarified the interplay between viscous and plastic deformations during cyclic loading of collagen fibrils. Here, we aim to interpret the complex nonlinear response of collagen fibrils and, ultimately, suggest predictive capabilities that can inform tissue-level response and injury. To validate our model, we compare our results against the stress-stretch data obtained from experiments of cyclic loaded single fibrils performed by Liu et al. (2018).


Collagen , Skin , Biomechanical Phenomena , Collagen Type I , Extracellular Matrix , Viscosity , Stress, Mechanical
7.
Sci Rep ; 12(1): 20654, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36450820

We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal. Besides, most DL-ROM models rely on convolutional layers, which might limit its application to only a structured mesh. The proposed framework in this study relies on the combination of an autoencoder (AE) and Barlow Twins (BT) self-supervised learning, where BT maximizes the information content of the embedding with the latent space through a joint embedding architecture. Through a series of benchmark problems of natural convection in porous media, BT-AE performs better than the previous DL-ROM framework by providing comparable results to POD-based approaches for problems where the solution lies within a linear subspace as well as DL-ROM autoencoder-based techniques where the solution lies on a nonlinear manifold; consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a proficient construction of the latent space is key to achieving these results, enabling us to map these latent spaces using regression models. The proposed framework achieves a relative error of 2% on average and 12% in the worst-case scenario (i.e., the training data is small, but the parameter space is large.). We also show that our framework provides a speed-up of [Formula: see text] times, in the best case, and [Formula: see text] times on average compared to a finite element solver. Furthermore, this BT-AE framework can operate on unstructured meshes, which provides flexibility in its application to standard numerical solvers, on-site measurements, experimental data, or a combination of these sources.

8.
Sci Rep ; 12(1): 20229, 2022 Nov 23.
Article En | MEDLINE | ID: mdl-36418389

We propose the use of reduced order modeling (ROM) to reduce the computational cost and improve the convergence rate of nonlinear solvers of full order models (FOM) for solving partial differential equations. In this study, a novel ROM-assisted approach is developed to improve the computational efficiency of FOM nonlinear solvers by using ROM's prediction as an initial guess. We hypothesize that the nonlinear solver will take fewer steps to the converged solutions with an initial guess that is closer to the real solutions. To evaluate our approach, four physical problems with varying degrees of nonlinearity in flow and mechanics have been tested: Richards' equation of water flow in heterogeneous porous media, a contact problem in a hyperelastic material, two-phase flow in layered porous media, and fracture propagation in a homogeneous material. Overall, our approach maintains the FOM's accuracy while speeding up nonlinear solver by 18-73% (through suitable ROM-assisted FOMs). More importantly, the proximity of ROM's prediction to the solution space leads to the improved convergence of FOMs that would have otherwise diverged with default initial guesses. We demonstrate that the ROM's accuracy can impact the computational efficiency with more accurate ROM solutions, resulting in a better cost reduction. We also illustrate that this approach could be used in many FOM discretizations (e.g., finite volume, finite element, or a combination of those). Since our ROMs are data-driven and non-intrusive, the proposed procedure can easily lend itself to any nonlinear physics-based problem.

9.
Proc Natl Acad Sci U S A ; 119(28): e2116675119, 2022 07 12.
Article En | MEDLINE | ID: mdl-35867753

Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.


Biocompatible Materials , Collagen , Hydrogels , Tissue Engineering , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Collagen/chemistry , Hydrogels/chemistry , Tissue Scaffolds/chemistry
10.
Bioact Mater ; 14: 52-60, 2022 Aug.
Article En | MEDLINE | ID: mdl-35310345

Adhesive hydrogels have been recently proposed as a potential option to seal and treat gastric perforation (GP) which causes high mortality despite advancements in surgical treatments. However, to be effective, the hydrogels must have sufficient tissue adhesiveness, tough mechanical property, tunable biodegradability and ideally are easy to apply and form. Herein, we report an adhesive and resilient hydrogel for the sealing and treatment of gastric perforation. The hydrogel consists of a bioactive, transglutaminase (TG)-crosslinked gelatin network and a dynamic, borate-crosslinked poly-N-[Tris(hydroxymethyl)methyl]acrylamide (PTH) network. The hydrogel can be formed in situ, facilitating easy delivery to the GP and allowing for precise sealing of the defects. In vivo experiments, using a perforated stomach mouse model, shows that the adhesive hydrogel plug effectively seals GP defects and promotes gastric mucosa regeneration. Overall, this hydrogel represents a promising biomaterial for GP treatment.

11.
Adv Mater ; 34(2): e2106149, 2022 Jan.
Article En | MEDLINE | ID: mdl-34648197

Epithelia are contiguous sheets of cells that stabilize the shape of internal organs and support their structure by covering their surfaces. They acquire diverse morphological forms appropriate for their specific functions during embryonic development, such as the kidney tubules and the complex branching structures found in the lung. The maintenance of epithelial morphogenesis and homeostasis is controlled by their remarkable mechanics-epithelia can become elastic, plastic, and viscous by actively remodeling cell-cell junctions and modulating the distribution of local stresses. Microfabrication, finite element modelling, light-sheet microscopy, and robotic micromanipulation are used to show that collagen gels covered with an epithelial skin serve as shape-programmable soft matter. The process involves solid to fluid transitions induced by mechanical perturbations, generates spatially distributed surface stresses at tissue interfaces, and is amenable to both additive and subtractive manufacturing techniques. The robustness and versatility of this strategy for engineering designer tissues is demonstrated by directing the morphogenesis of a variety of molded, carved, and assembled forms from the base material. The results provide insight into the active mechanical properties of the epithelia and establish methods for engineering tissues with sustainable architectures.


Collagen , Tissue Engineering , Epithelium , Morphogenesis , Skin
12.
Adv Mater ; 33(40): e2102641, 2021 Oct.
Article En | MEDLINE | ID: mdl-34363246

Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.


Extracellular Matrix/chemistry , Robotics , Animals , Cell Adhesion , Cell Movement , Finite Element Analysis , Mice , NIH 3T3 Cells , Oligopeptides/chemistry , Wireless Technology
13.
Nano Lett ; 21(11): 4570-4576, 2021 Jun 09.
Article En | MEDLINE | ID: mdl-33914547

All-solid-state lithium batteries promise significant improvements in energy density and safety over traditional liquid electrolyte batteries. The Al-doped Li7La3Zr2O12 (LLZO) solid-state electrolyte shows excellent potential given its high ionic conductivity and good thermal, chemical, and electrochemical stability. Nevertheless, further improvements on electrochemical and mechanical properties of LLZO call for an in-depth understanding of its local microstructure. Here, we employ Bragg coherent diffractive imaging to investigate the atomic displacements inside single grains of LLZO with various Al-doping concentrations, resulting in cubic, tetragonal, and cubic-tetragonal mixed structures. We observe coexisting domains of different crystallographic orientations in the tetragonal structure. We further show that Al doping leads to crystal defects such as dislocations and phase boundaries in the mixed- and cubic-phase grain. This study addresses the effect of Al doping on the nanoscale structure within individual grains of LLZO, which is informative for the future development of solid-state batteries.

14.
Soft Matter ; 17(45): 10198-10209, 2021 Nov 24.
Article En | MEDLINE | ID: mdl-33118554

Tissue morphogenesis and regeneration are essentially mechanical processes that involve coordination of cellular forces, production and structural remodeling of extracellular matrix (ECM), and cell migration. Discovering the principles of cell-ECM interactions and tissue-scale deformation in mechanically-loaded tissues is instrumental to the development of novel regenerative therapies. The combination of high-throughput three-dimensional (3D) culture systems and experimentally-validated computational models accelerate the study of these principles. In our previous work [E. Mailand, et al., Biophys. J., 2019, 117, 975-986], we showed that prominent surface stresses emerge in constrained fibroblast-populated collagen gels, driving the morphogenesis of fibrous microtissues. Here, we introduce an active material model that allows the embodiment of surface and bulk contractile stresses while maintaining the passive elasticity of the ECM in a 3D setting. Unlike existing models, the stresses are driven by mechanosensing and not by an externally applied signal. The mechanosensing component is incorporated in the model through a direct coupling of the local deformation state with the associated contractile force generation. Further, we propose a finite element implementation to account for large deformations, nonlinear active material response, and surface effects. Simulation results quantitatively capture complex shape changes during tissue formation and as a response to surgical disruption of tissue boundaries, allowing precise calibration of the parameters of the 3D model. The results of this study imply that the organization of the extracellular matrix in the bulk of the tissue may not be a major factor behind the morphogenesis of fibrous tissues at sub-millimeter length scales.


Collagen , Extracellular Matrix , Computer Simulation , Elasticity , Fibroblasts
15.
Nat Comput Sci ; 1(12): 819-829, 2021 Dec.
Article En | MEDLINE | ID: mdl-38217189

Here we employ and adapt the image-to-image translation concept based on conditional generative adversarial networks (cGAN) for learning a forward and an inverse solution operator of partial differential equations (PDEs). We focus on steady-state solutions of coupled hydromechanical processes in heterogeneous porous media and present the parameterization of the spatially heterogeneous coefficients, which is exceedingly difficult using standard reduced-order modeling techniques. We show that our framework provides a speed-up of at least 2,000 times compared to a finite-element solver and achieves a relative root-mean-square error (r.m.s.e.) of less than 2% for forward modeling. For inverse modeling, the framework estimates the heterogeneous coefficients, given an input of pressure and/or displacement fields, with a relative r.m.s.e. of less than 7%, even for cases where the input data are incomplete and contaminated by noise. The framework also provides a speed-up of 120,000 times compared to a Gaussian prior-based inverse modeling approach while also delivering more accurate results.

16.
Adv Mater ; 32(43): e2001628, 2020 Oct.
Article En | MEDLINE | ID: mdl-32945035

Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.


Bandages , Drug Carriers/chemistry , Hydrogels/chemistry , Adhesiveness , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Diabetes Mellitus, Type 1/pathology , Drug Design , Drug Liberation , Humans , Hydrogen Bonding , Liver Neoplasms/pathology , Mechanical Phenomena , Mice
17.
Proc Math Phys Eng Sci ; 476(2233): 20190761, 2020 Jan.
Article En | MEDLINE | ID: mdl-32082069

In the past decade, many experiments have indicated that the surfaces of soft elastic solids can resist deformation by surface stresses. A common soft elastic solid is a hydrogel which consists of a polymer network swollen in water. Although experiments suggest that solvent flow in gels can be affected by surface stress, there is no theoretical analysis on this subject. Here we study the solvent flow near a line load acting on a linear poroelastic half space. The surface of this half space resists deformation by a constant, isotropic surface stress. It can also resist deformation by surface bending. The time-dependent displacement, stress and flow fields are determined using transform methods. Our solution indicates that the stress field underneath the line load is completely regularized by surface bending-it is bounded and continuous. For small surface bending stiffness, the line force is balanced by surface stresses; these forces form what is commonly known as 'Neumann's triangle'. We show that surface stress reduces local pore pressure and inhibits solvent flow. We use our line load solution to simulate the relaxation of the peak which is formed by applying and then removing a line force on the poroelastic half space.

18.
Nat Commun ; 10(1): 4602, 2019 10 10.
Article En | MEDLINE | ID: mdl-31601796

The success of engineered cell or tissue implants is dependent on vascular regeneration to meet adequate metabolic requirements. However, development of a broadly applicable strategy for stable and functional vascularization has remained challenging. We report here highly organized and resilient microvascular meshes fabricated through a controllable anchored self-assembly method. The microvascular meshes are scalable to centimeters, almost free of defects and transferrable to diverse substrates, ready for transplantation. They promote formation of functional blood vessels, with a density as high as ~220 vessels mm-2, in the poorly vascularized subcutaneous space of SCID-Beige mice. We further demonstrate the feasibility of fabricating microvascular meshes from human induced pluripotent stem cell-derived endothelial cells, opening a way to engineer patient-specific microvasculature. As a proof-of-concept for type 1 diabetes treatment, we combine microvascular meshes and subcutaneously transplanted rat islets and achieve correction of chemically induced diabetes in SCID-Beige mice for 3 months.


Cell Culture Techniques/instrumentation , Diabetes Mellitus, Experimental/therapy , Islets of Langerhans Transplantation/methods , Microvessels/growth & development , Animals , Bioengineering , Cell Culture Techniques/methods , Diabetes Mellitus, Experimental/complications , Female , Human Umbilical Vein Endothelial Cells , Humans , Hyperglycemia/therapy , Induced Pluripotent Stem Cells/cytology , Islets of Langerhans Transplantation/instrumentation , Male , Mice, SCID , Microvessels/cytology , Microvessels/physiology , Neovascularization, Physiologic , Rats, Sprague-Dawley
19.
Biophys J ; 117(5): 975-986, 2019 09 03.
Article En | MEDLINE | ID: mdl-31427068

Engineered fibrous tissues consisting of cells encapsulated within collagen gels are widely used three-dimensional in vitro models of morphogenesis and wound healing. Although cell-mediated matrix remodeling that occurs within these scaffolds has been extensively studied, less is known about the mesoscale physical principles governing the dynamics of tissue shape. Here, we show both experimentally and by using computer simulations how surface contraction through the development of surface stresses (analogous to surface tension in fluids) coordinates with bulk contraction to drive shape evolution in constrained three-dimensional microtissues. We used microelectromechanical systems technology to generate arrays of fibrous microtissues and robot-assisted microsurgery to perform local incisions and implantation. We introduce a technique based on phototoxic activation of a small molecule to selectively kill cells in a spatially controlled manner. The model simulations, which reproduced the experimentally observed shape changes after surgical and photochemical operations, indicate that fitting of only bulk and surface contractile moduli is sufficient for the prediction of the equilibrium shape of the microtissues. The computational and experimental methods we have developed provide a general framework to study and predict the morphogenic states of contractile fibrous tissues under external loading at multiple length scales.


Stress, Mechanical , Tissue Engineering/methods , 3T3 Cells , Animals , Cell Differentiation , Computer Simulation , Elastic Modulus , Extracellular Matrix/chemistry , Mice , Rats , Robotics/methods , Tissue Scaffolds/chemistry
...