Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 98(2): 525-536, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160208

RESUMEN

The presence of plastic and microplastic within the oceans as well as in marine flora and fauna have caused a multitude of problems that have been the topic of numerous investigations for many years. However, their impact on human health remains largely unknown. Such plastic and microplastic particles have been detected in blood and placenta, underlining their ability to enter the human body. Plastics also contain other compounds, such as plasticizers, antioxidants, or dyes, whose impact on human health is currently being studied. Critical enzymes within the metabolism of endogenous molecules, especially of xenobiotics, are the cytochrome P450 monooxygenases (CYPs). Although their importance in maintaining cellular balance has been confirmed, their interactions with plastics and related products are poorly understood. In this study, the possible relationship between different plastic-related compounds and CYP3A4 as one of the most important CYPs was analyzed using hepatic cells overexpressing this enzyme. Beginning with virtual compound screening and molecular docking of more than 1000 plastic-related compounds, several candidates were identified to interact with CYP3A4. In a second step, RNA-sequencing was used to study in detail the transcriptome-wide gene expression levels affected by the selected compounds. Three candidate molecules ((2,2'-methylenebis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane, and 2,2'-methylenebis(6-cyclohexyl-4-methylphenol)) had an excellent binding affinity to CYP3A4 in-silico as well as cytotoxic effects and interactions with several metabolic pathways in-vitro. We identified common pathways influenced by all three selected plastic-related compounds. In particular, the suppression of pathways related to mitosis and 'DNA-templated DNA replication' which were confirmed by cell cycle analysis and single-cell gel electrophoresis. Furthermore, several mis-regulated metabolic and inflammation-related pathways were identified, suggesting the induction of hepatotoxicity at different levels. These findings imply that these compounds may cause liver problems subsequently affecting the entire organism.


Asunto(s)
Cresoles , Citocromo P-450 CYP3A , Transcriptoma , Embarazo , Femenino , Humanos , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Plásticos/toxicidad , Microplásticos , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
2.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627164

RESUMEN

The majority of hematopoietic cancers in adults are incurable and exhibit unpredictable remitting-relapsing patterns in response to various therapies. The proto-oncogene c-MYC has been associated with tumorigenesis, especially in hematological neoplasms. Therefore, targeting c-MYC is crucial to find effective, novel treatments for blood malignancies. To date, there are no clinically approved c-MYC inhibitors. In this study, we virtually screened 1578 Food and Drug Administration (FDA)-approved drugs from the ZINC15 database against c-MYC. The top 117 compounds from PyRx-based screening with the best binding affinities to c-MYC were subjected to molecular docking studies with AutoDock 4.2.6. Retinoids consist of synthetic and natural vitamin A derivatives. All-trans-retinoic acid (ATRA) were highly effective in hematological malignancies. In this study, adapalene, a third-generation retinoid usually used to treat acne vulgaris, was selected as a potent c-MYC inhibitor as it robustly bound to c-MYC with a lowest binding energy (LBE) of -7.27 kcal/mol, a predicted inhibition constant (pKi) of 4.69 µM, and a dissociation constant (Kd value) of 3.05 µM. Thus, we examined its impact on multiple myeloma (MM) cells in vitro and evaluated its efficiency in vivo using a xenograft tumor zebrafish model. We demonstrated that adapalene exerted substantial cytotoxicity against a panel of nine MM and two leukemic cell lines, with AMO1 cells being the most susceptible one (IC50 = 1.76 ± 0.39 µM) and, hence, the focus of this work. Adapalene (0.5 × IC50, 1 × IC50, 2 × IC50) decreased c-MYC expression and transcriptional activity in AMO1 cells in a dose-dependent manner. An examination of the cell cycle revealed that adapalene halted the cells in the G2/M phase and increased the portion of cells in the sub-G0/G1 phase after 48 and 72 h, indicating that cells failed to initiate mitosis, and consequently, cell death was triggered. Adapalene also increased the number of p-H3(Ser10) positive AMO1 cells, which is a further proof of its ability to prevent mitotic exit. Confocal imaging demonstrated that adapalene destroyed the tubulin network of U2OS cells stably transfected with a cDNA coding for α-tubulin-GFP, refraining the migration of malignant cells. Furthermore, adapalene induced DNA damage in AMO1 cells. It also induced apoptosis and autophagy, as demonstrated by flow cytometry and western blotting. Finally, adapalene impeded tumor growth in a xenograft tumor zebrafish model. In summary, the discovery of the vitamin A derivative adapalene as a c-MYC inhibitor reveals its potential as an avant-garde treatment for MM.

3.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570631

RESUMEN

The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study was to investigate the molecular modes of action of a 1,2,4-oxadiazole derivative (ZINC15675948) as a c-MYC inhibitor. ZINC15675948 displayed profound cytotoxicity at the nanomolar range in CCRF-CEM leukemia and MDA-MB-231-pcDNA3 breast cancer cells. Multidrug-resistant sublines thereof (i.e., CEM/ADR5000 and MDA-MB-231-BCRP) were moderately cross-resistant to this compound (<10-fold). Molecular docking and microscale thermophoresis revealed a strong binding of ZINC15675948 to c-MYC by interacting close to the c-MYC/MAX interface. A c-MYC reporter assay demonstrated that ZINC15675948 inhibited c-MYC activity. Western blotting and qRT-PCR showed that c-MYC expression was downregulated by ZINC15675948. Applying microarray hybridization and signaling pathway analyses, ZINC15675948 affected signaling routes downstream of c-MYC in both leukemia and breast cancer cells as demonstrated by the induction of DNA damage using single cell gel electrophoresis (alkaline comet assay) and induction of apoptosis using flow cytometry. ZINC15675948 also caused G2/M phase and S phase arrest in CCRF-CEM cells and MDA-MB-231-pcDNA3 cells, respectively, accompanied by the downregulation of CDK1 and p-CDK2 expression using western blotting. Autophagy induction was observed in CCRF-CEM cells but not MDA-MB-231-pcDNA3 cells. Furthermore, microarray-based mRNA expression profiling indicated that ZINC15675948 may target c-MYC-regulated ubiquitination, since the novel ubiquitin ligase (ELL2) was upregulated in the absence of c-MYC expression. We propose that ZINC15675948 is a promising natural product-derived compound targeting c-MYC in c-MYC-driven cancers through DNA damage, cell cycle arrest, and apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Leucemia , Humanos , Femenino , Extractos Vegetales/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Proteínas de Neoplasias , Apoptosis , Leucemia/tratamiento farmacológico , Factores de Elongación Transcripcional
4.
Eur J Pharmacol ; 956: 175980, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567459

RESUMEN

The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.


Asunto(s)
Antineoplásicos Fitogénicos , Leucemia , Parthanatos , Humanos , Paladio/farmacología , Halógenos/farmacología , Bases de Schiff/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Antineoplásicos Fitogénicos/farmacología , Muerte Celular , Apoptosis , Leucemia/tratamiento farmacológico
5.
Cell Biol Toxicol ; 39(6): 2971-2997, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37322258

RESUMEN

Overcoming multidrug resistance (MDR) represents a major obstacle in cancer chemotherapy. Cardiac glycosides (CGs) are efficient in the treatment of heart failure and recently emerged in a new role in the treatment of cancer. ZINC253504760, a synthetic cardenolide that is structurally similar to well-known GCs, digitoxin and digoxin, has not been investigated yet. This study aims to investigate the cytotoxicity of ZINC253504760 on MDR cell lines and its molecular mode of action for cancer treatment. Four drug-resistant cell lines (P-glycoprotein-, ABCB5-, and EGFR-overexpressing cells, and TP53-knockout cells) did not show cross-resistance to ZINC253504760 except BCRP-overexpressing cells. Transcriptomic profiling indicated that cell death and survival as well as cell cycle (G2/M damage) were the top cellular functions affected by ZINC253504760 in CCRF-CEM cells, while CDK1 was linked with the downregulation of MEK and ERK. With flow cytometry, ZINC253504760 induced G2/M phase arrest. Interestingly, ZINC253504760 induced a novel state-of-the-art mode of cell death (parthanatos) through PARP and PAR overexpression as shown by western blotting, apoptosis-inducing factor (AIF) translocation by immunofluorescence, DNA damage by comet assay, and mitochondrial membrane potential collapse by flow cytometry. These results were ROS-independent. Furthermore, ZINC253504760 is an ATP-competitive MEK inhibitor evidenced by its interaction with the MEK phosphorylation site as shown by molecular docking in silico and binding to recombinant MEK by microscale thermophoresis in vitro. To the best of our knowledge, this is the first time to describe a cardenolide that induces parthanatos in leukemia cells, which may help to improve efforts to overcome drug resistance in cancer. A cardiac glycoside compound ZINC253504760 displayed cytotoxicity against different multidrug-resistant cell lines. ZINC253504760 exhibited cytotoxicity in CCRF-CEM leukemia cells by predominantly inducing a new mode of cell death (parthanatos). ZINC253504760 downregulated MEK1/2 phosphorylation and further affected ERK activation, which induced G2/M phase arrest.


Asunto(s)
Glicósidos Cardíacos , Leucemia , Parthanatos , Humanos , Apoptosis , Fosforilación , Línea Celular Tumoral , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/uso terapéutico , Regulación hacia Abajo , Simulación del Acoplamiento Molecular , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Puntos de Control de la Fase G2 del Ciclo Celular , Proteínas de Neoplasias , Leucemia/tratamiento farmacológico , Cardenólidos/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Resistencia a Antineoplásicos
6.
Acta Pharmacol Sin ; 44(11): 2265-2281, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37344563

RESUMEN

The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.


Asunto(s)
Mieloma Múltiple , Parthanatos , Sesquiterpenos , Animales , Humanos , Tubulina (Proteína) , Pez Cebra/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Lactonas/farmacología , Lactonas/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Línea Celular Tumoral
7.
Pharmaceutics ; 15(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111592

RESUMEN

The proto-oncogenic transcription factor c-MYC plays a pivotal role in the development of tumorigenesis, cellular proliferation, and the control of cell death. Its expression is frequently altered in many cancer types, including hematological malignancies such as leukemia. The dimer isoniazide ELI-XXIII-98-2 is a derivative of the natural product artemisinin, with two artemisinin molecules and an isoniazide moiety as a linker in between them. In this study, we aimed to study the anticancer activity and the molecular mechanisms of this dimer molecule in drug-sensitive CCRF-CEM leukemia cells and their corresponding multidrug-resistant CEM/ADR5000 sub-line. The growth inhibitory activity was studied using the resazurin assay. To reveal the molecular mechanisms underlying the growth inhibitory activity, we performed in silico molecular docking, followed by several in vitro approaches such as the MYC reporter assay, microscale thermophoresis, microarray analyses, immunoblotting, qPCR, and comet assay. The artemisinin dimer isoniazide showed a potent growth inhibitory activity in CCRF-CEM but a 12-fold cross-resistance in multidrug-resistant CEM/ADR5000 cells. The molecular docking of artemisinin dimer isoniazide with c-MYC revealed a good binding (lowest binding energy of -9.84 ± 0.3 kcal/mol) and a predicted inhibition constant (pKi) of 66.46 ± 29.5 nM, which was confirmed by microscale thermophoresis and MYC reporter cell assays. Furthermore, c-MYC expression was downregulated by this compound in microarray hybridization and Western blotting analyses. Finally, the artemisinin dimer isoniazide modulated the expression of autophagy markers (LC3B and p62) and the DNA damage marker pH2AX, indicating the stimulation of both autophagy and DNA damage, respectively. Additionally, DNA double-strand breaks were observed in the alkaline comet assay. DNA damage, apoptosis, and autophagy induction could be attributed to the inhibition of c-MYC by ELI-XXIII-98-2.

8.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838857

RESUMEN

Cancer drug resistance remains a major obstacle in clinical oncology. As most anticancer drugs are of natural origin, we investigated the anticancer potential of a standardized cold-water leaf extract from Nerium oleander L., termed Breastin. The phytochemical characterization by nuclear magnetic resonance spectroscopy (NMR) and low- and high-resolution mass spectrometry revealed several monoglycosidic cardenolides as major constituents (adynerin, neritaloside, odoroside A, odoroside H, oleandrin, and vanderoside). Breastin inhibited the growth of 14 cell lines from hematopoietic tumors and 5 of 6 carcinomas. Remarkably, the cellular responsiveness of odoroside H and neritaloside was not correlated with all other classical drug resistance mechanisms, i.e., ATP-binding cassette transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS), tumor suppressors (TP53, WT1), and others (GSTP1, HSP90, proliferation rate), in 59 tumor cell lines of the National Cancer Institute (NCI, USA), indicating that Breastin may indeed bypass drug resistance. COMPARE analyses with 153 anticancer agents in 74 tumor cell lines of the Oncotest panel revealed frequent correlations of Breastin with mitosis-inhibiting drugs. Using tubulin-GFP-transfected U2OS cells and confocal microscopy, it was found that the microtubule-disturbing effect of Breastin was comparable to that of the tubulin-depolymerizing drug paclitaxel. This result was verified by a tubulin polymerization assay in vitro and molecular docking in silico. Proteome profiling of 3171 proteins in the NCI panel revealed protein subsets whose expression significantly correlated with cellular responsiveness to odoroside H and neritaloside, indicating that protein expression profiles can be identified to predict the sensitivity or resistance of tumor cells to Breastin constituents. Breastin moderately inhibited breast cancer xenograft tumors in vivo. Remarkably, in contrast to what was observed with paclitaxel monotherapy, the combination of paclitaxel and Breastin prevented tumor relapse, indicating Breastin's potential for drug combination regimens.


Asunto(s)
Antineoplásicos , Neoplasias , Nerium , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Nerium/química , Paclitaxel , Extractos Vegetales/química , Tubulina (Proteína) , Animales
9.
J Nat Prod ; 86(1): 131-137, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538372

RESUMEN

The first total syntheses of the orchid-derived natural products isoarundinin I (1), (±)-bleochrin F ((±)-2), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) from renewable starting materials are reported, along with the evaluation of their biological activities. The total syntheses were based on regioselective aromatic bromination reactions in combination with a key acid-promoted regioselective intramolecular cyclization. The biological results suggest that isoarundinin I (1), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) have the potential to inhibit the growth of both sensitive and multidrug-resistant cancer cells.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ciclización , Halogenación , Estereoisomerismo
10.
Plants (Basel) ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202401

RESUMEN

Daucus carota L., a member of the Apiaceae family, comprises 13 subspecies, with one being cultivated (D. carota L. ssp. sativus (Hoffm.) Arcang.) and the remaining being wild. Traditionally, the wild carrot has been recognized for its antilithic, diuretic, carminative, antiseptic, and anti-inflammatory properties and has been employed in the treatment of urinary calculus, cystitis, gout, prostatitis, and cancer. While extensive literature is available on the phytochemical, pharmacological, and therapeutic evaluations of the cultivated carrot, limited information has been published on the wild carrot. A thorough search was conducted on the phytochemical composition, folk-medicine uses, and pharmacological properties of wild carrot subspecies (Daucus carota L. ssp. carota). Various electronic databases were consulted, and the literature spanning from 1927 to early 2023 was reviewed. Thirteen wild Daucus carota subspecies were analyzed, revealing over 310 compounds, including terpenoids, phenylpropenoids, flavonoids, and phenolic acids, with 40 constituting more than 3% of the composition. This review also highlights the antioxidant, anticancer, antipyretic, analgesic, antibacterial, antifungal, hypolipidemic, and hepato- and gastroprotective properties of wild carrot subspecies. Existing in vitro and in vivo studies support their traditional uses in treating infections, inflammation, and cancer. However, further research on other subspecies is required to confirm additional applications. Well-designed preclinical and clinical trials are still necessary to establish the safety and efficacy of wild Daucus carota for human use.

11.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144591

RESUMEN

The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes of action. Pearson test-base correlation analyses of the log10IC50 values of 55 tumor cell lines of the National Cancer Institute (NCI), USA, for gedunin with those of 91 standard anticancer agents revealed statistically significant relationships to all 10 tested microtubule inhibitors. Thus, we hypothesized that gedunin may be a novel microtubule inhibitor. Confocal microscopy, cell cycle measurements, and molecular docking in silico substantiated our assumption. Agglomerative cluster analyses and the heat map generation of proteomic data revealed a subset of 40 out of 3171 proteins, the expression of which significantly correlated with sensitivity or resistance for the NCI cell line panel to gedunin. This indicates the complexity of gedunin's activity against cancer cells, underscoring the value of network pharmacological techniques for the investigation of the molecular modes of drug action. Finally, we correlated the transcriptome-wide mRNA expression of known drug resistance mechanism (ABC transporter, oncogenes, tumor suppressors) log10IC50 values for gedunin. We did not find significant correlations, indicating that gedunin's anticancer activity might not be hampered by classical drug resistance mechanisms. In conclusion, gedunin is a novel microtubule-inhibiting drug candidate which is not involved in multidrug resistance mechanisms such as other clinically established mitotic spindle poisons.


Asunto(s)
Antineoplásicos , Neoplasias , Venenos , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Limoninas , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Venenos/farmacología , Proteómica , ARN Mensajero , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
12.
Cancer Genomics Proteomics ; 19(5): 540-555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35985681

RESUMEN

BACKGROUND/AIM: Multiple myeloma (MM) is characterized by accumulation of a malignant clone of plasma cells in the bone marrow. Curative treatments are not yet available. Therefore, we undertook a drug repurposing approach to identify possible candidates from a chemical library of 1,230 FDA-approved drugs by virtual drug screening. As a target, we have chosen the non-receptor Bruton's tyrosine kinase (BTK) which is one of the main regulators of the MM biomarker CD38. MATERIALS AND METHODS: In silico virtual screening was performed by using PyRx. Flow cytometry was applied for cell cycle and apoptosis analysis. Furthermore, protein and gene expression was determined by western blotting and microarray hybridization. Lipid raft staining was observed by confocal microscopy. RESULTS: The in silico identified lipid-lowering lomitapide presented with the strongest cytotoxicity among the top 10 drug candidates. This drug arrested the cell cycle in the G2/M phase and induced apoptosis in MM cells. Western blot analyses revealed that treatment with lomitapide induced cleavage of the apoptosis regulator PARP and reduced the expression of CD38, an integral part of lipid rafts. Using confocal microscopy, we further observed that lipid raft microdomain formation in MM cells was inhibited by lomitapide. In four MM cell lines (KMS-12-BM, NCI-H929, RPMI-8226, and MOLP-8) treated with lomitapide, microarray analyses showed not only that the expression of CD38 and BTK was down-regulated, but also that the tumor suppressor gene TP53 and the oncogene c-MYC were among the top deregulated genes. Further analysis of these data by Ingenuity pathway analysis (IPA) suggested that lomitapide interferes with the cross-talk of CD38 and BTK and apoptosis-regulating genes via TP53 and c-MYC. CONCLUSION: Lomitapide treatment led to disruption of lipid raft domains and induction of pro-apoptotic factors and might, therefore, be considered as a potential therapeutic agent in MM.


Asunto(s)
Bencimidazoles , Microdominios de Membrana , Mieloma Múltiple , Transducción de Señal , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Línea Celular Tumoral , Humanos , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
In Vivo ; 36(4): 1651-1666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35738589

RESUMEN

BACKGROUND/AIM: The ATP-binding cassette subfamily B member 5 (ABCB5) transporter plays a pivotal role in melanocyte progenitor cell fusion and has been identified as a tumor-initiating cell marker. In this study, we determined ABCB5 expression in normal tissues among various species, i.e., Homo sapiens, Mus musculus (mouse), Rattus norvegicus (rat), Sus scrofa domesticus (pig), Gallus gallus (chicken), Anser anser (goose), Poecilia reticulata (Guppy fish), and Lumbricus terrestris (earthworm), as well as 426 biopsies of different human tumor types (colorectal, cervical, endometrium, vaginal, nasopharyngeal, kidney, breast, colon, prostate, pancreas, lung, gallbladder, bladder, brain, liver, skin, small intestine, testis, tonsil, uterus, thyroid, stomach, esophagus, fallopian, parotid, and ovary). MATERIALS AND METHODS: Using immunohistochemical staining, ABCB5 expression was detected and evaluated in formalin-fixed, paraffin-embedded sections. RESULTS: High ABCB5 expression was found in normal tissues in specialized cells with secretory and excretory functions, chorionic villi of the placenta, hepatocytes, and blood-tissue barrier sites in the brain and testis. Besides, heterogeneous expression of ABCB5 was also observed in many different tumor types derived from breast, endometrium, ovary, uterus, cervix, prostate, lung, brain, colon, liver, nasopharynx, and others. CONCLUSION: The localization of ABCB5 in different normal tissues suggests that this protein has an excretory pumping role for physiological metabolites and xenobiotics. This physiological role highlighted its possible impact on the development of multidrug resistance in tumors. Further studies are required to establish the possible clinical significance of ABCB5 as a predictive marker for drug resistance and as a prognostic marker for patient survival.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Células Madre Neoplásicas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Biomarcadores/metabolismo , Pollos , Femenino , Gansos , Humanos , Masculino , Ratones , Células Madre Neoplásicas/metabolismo , Oligoquetos , Embarazo , Ratas , Piel/metabolismo , Porcinos
14.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34832908

RESUMEN

Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated the sensitivity or resistance of cancer cells to crizotinib. Transcription factor binding motif analyses in gene promoters divulged two transcription factors possibly regulating the expression of these genes, i.e., RXRA and GATA1, which are important for leukemia and erythroid development, respectively. COMPARE analyses also implied that cell lines of various cancer types displayed varying degrees of sensitivity to crizotinib. Unexpectedly, leukemia but not lung cancer cells were the most sensitive cells among the different types of NCI cancer cell lines. Re-examining this result in another panel of cell lines indeed revealed that crizotinib exhibited potent cytotoxicity towards acute myeloid leukemia and multiple myeloma cells. P-glycoprotein-overexpressing CEM/ADR5000 leukemia cells were cross-resistant to crizotinib. NCI-H929 multiple myeloma cells were the most sensitive cells. Hence, we evaluated the mode of action of crizotinib on these cells. Although crizotinib is a TKI, it showed highest correlation rates with DNA topoisomerase II inhibitors and tubulin inhibitors. The altered gene expression profiles after crizotinib treatment predicted several networks, where TOP2A and genes related to cell cycle were downregulated. Cell cycle analyses showed that cells incubated with crizotinib for 24 h accumulated in the G2M phase. Crizotinib also increased the number of p-H3(Ser10)-positive NCI-H929 cells illustrating crizotinib's ability to prevent mitotic exit. However, cells accumulated in the sub-G0G1 fraction with longer incubation periods, indicating apoptosis induction. Additionally, crizotinib disassembled the tubulin network of U2OS cells expressing an α-tubulin-GFP fusion protein, preventing migration of cancer cells. This result was verified by in vitro tubulin polymerization assays. In silico molecular docking also revealed a strong binding affinity of crizotinib to the colchicine and Vinca alkaloid binding sites. Taken together, these results demonstrate that crizotinib destabilized microtubules. Additionally, the decatenation assay showed that crizotinib partwise inhibited the catalytic activity of DNA topoisomerase II. In conclusion, crizotinib exerted kinase-independent cytotoxic effects through the dual inhibition of tubulin polymerization and topoisomerase II and might be used to treat not only NSCLC but also multiple myeloma.

15.
Pharmacol Res ; 160: 105091, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712320

RESUMEN

Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Procesamiento Proteico-Postraduccional , Proteómica , Animales , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fosforilación , Proteoma
16.
Cancer Lett ; 459: 248-267, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31132429

RESUMEN

Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.


Asunto(s)
Naftoquinonas/química , Naftoquinonas/farmacología , Neoplasias/terapia , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Modelos Moleculares , Naftoquinonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Relación Estructura-Actividad
17.
Phytomedicine ; 62: 152945, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31132750

RESUMEN

BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad. PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK). RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins. CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Citrullus colocynthis/química , Leucemia/tratamiento farmacológico , Triterpenos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Leucemia/metabolismo , Leucemia/patología , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
J Pharm Pharmacol ; 69(11): 1552-1564, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28872682

RESUMEN

BACKGROUND: Previous studies in our laboratory showed that Daucus carota oil extract (DCOE) possesses remarkable in-vitro anticancer activity and antitumour promoting effect against DMBA/TPA skin carcinogenesis in mice. Chemical analysis of DCOE led to the isolation of the ß-2-himachalen-6-ol (HC), major sesquiterpene with a potent anticancer activity against various colon, breast, brain and skin cancer cells. This study investigated the anticancer activity of HC against invasive epidermal squamous cell carcinoma cells and evaluated its effect in a DMBA/TPA skin carcinogenesis Balb/c murine model. METHODS: HaCaT-ras II-4 epidermal squamous cells were treated with HC (1, 5, 10, 25 and 50 µg/ml), and cell viability was evaluated with WST 1 assay kit. Cell cycle analysis was carried out by flow cytometry, and pro/anti-apoptotic proteins were measured using Western blot. The effect of topical and intraperitoneal (IP) treatment with HC in mice was assessed using the DMBA/TPA skin carcinogenesis model. Cisplatin (2.5 mg/kg; IP) was used as a positive control. Papilloma incidence, yield and volume were monitored, and isolated papillomas were assessed for their pro/anti-apoptotic proteins and morphology. RESULTS: ß-2-himachalen-6-ol showed a dose-dependent decrease in cell survival with an IC50 and IC90 of 8 and 30 µg/ml, respectively. Flow cytometry analysis revealed that treatment with 10 µg/ml HC significantly increased the number of cells undergoing late apoptosis (28%), while 25 µg/ml caused a larger cell shift towards late apoptosis (46.6%) and necrosis (39%). A significant decrease in protein levels of p53 and Bcl-2 and a significant increase in p21 and Bax were observed. Also, there was a significant decrease in p-Erk and p-Akt protein levels. The treatment of mice (IP and topical) with HC caused a significant decrease in papilloma yield, incidence and volume. Similar effects were observed with cisplatin treatment, but HC-treated groups exhibited twofold to threefold increase in survival rates. Similar patterns in the pro- and anti-apoptotic proteins were observed in mice treated with HC, except for a significant increase in p53 protein. CONCLUSIONS: In conclusion, HC treatment induced cell cycle arrest (low dose) and promoted apoptosis partly via inhibition of the MAPK/ERK and PI3K/AKT pathways with no significant toxicity to laboratory mice.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Sesquiterpenos/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daucus carota/química , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Sesquiterpenos/administración & dosificación , Sesquiterpenos/aislamiento & purificación , Neoplasias Cutáneas/patología
19.
Chem Biol Interact ; 275: 162-170, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28782499

RESUMEN

Previous studies in our laboratory showed that Daucus carota oil extract (DCOE) possesses in vitro and in vivo anticancer activities. Chemical analysis of DCOE led to the isolation of ß-2-himachalen-6-ol (HC) which exhibited potent anticancer activity against colon, breast, brain and skin cancer cells. The present study investigates the anticancer activity of HC against SW1116 colon cancer cell lines, and evaluates its effect in a 1,2-dimethylhydrazine (DMH) colon carcinogenesis black6 mice model. The SW1116 colon cancer cell line was treated with HC (1, 5, 10 and 25 µg/ml) and cell viability was evaluated with WST 1 assay kit. Cell cycle analysis was carried out by flow cytometry, and pro/anti-apoptotic proteins were measured using western blot. The effect of intraperitoneal (IP) treatment with HC (10, 25 and 50 µg/ml) in mice was assessed using the DMH colon carcinogenesis model with Cisplatin (2.5 µg/kg; IP) as a positive control. Blood samples were collected for assessment of liver toxicity and colon tumor incidence and size were studied histologically. HC showed a dose-dependent decrease in cell survival with an IC50 of 18 and 14.5 µg/ml after 24 and 48 h respectively. Flow cytometry analysis revealed that 10 µg/ml HC increased the number of cells undergoing necrosis (18.05%) and late apoptosis (15.66%). At HC 25 µg/ml more cells shifted toward necrosis (58.01%) and late apoptosis (30.47%). Western blot analysis revealed a significant decrease in p-Erk, p-Akt, pro-caspase-3 and Bcl-2 and an increase in p53, p21, Bax and PARP proteins. Mice treatment (IP) with HC caused a significant decrease in tumor incidence and size. Similar effects were observed with cisplatin treatment. In conclusion, HC treatment (low dose) induced cell cycle arrest and promoted apoptosis via inhibition of the MAPK/ERK and PI3K/AKT pathways. HC treatment also had antitumor effect in vivo with no significant toxicity to laboratory mice.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sesquiterpenos/toxicidad , Transducción de Señal/efectos de los fármacos , 1,2-Dimetilhidrazina , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Daucus carota/química , Daucus carota/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sesquiterpenos/química , Sesquiterpenos/uso terapéutico
20.
J Ethnopharmacol ; 190: 59-67, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27240746

RESUMEN

Daucus carota ssp. carota, also known as wild carrot, is a commonly used herb in Lebanese folk medicine to treat several ailments including cancer. Previous studies in our laboratories showed that the Daucus carota oil extract (DCOE) and subsequent fractions exhibit antioxidant, anti-inflammatory and anti-cancer activities. In this study, we report the isolation and identification of the major compound responsible for the anti-cancer activity of DCOE along with the mechanism of action involved. GC-MS and NMR spectroscopy revealed the identity of the major compound as ß-2-himachalen-6-ol, a novel sesquiterpene unique to the Lebanese wild carrot. ß-2-Himachalen-6-ol demonstrated potent anti-cancer activity against B16F-10, Caco-2, MB-MDA-231, A549 and SF-268 cancer cells (IC50 13-4µg/ml; 58-18µM), with SF-268 cells being the most sensitive. The sesquiterpene was shown to induce cell death through apoptosis (flow cytometry), decrease 2D cell motility (wound healing assay) and 3D invasion, as well as increase cell adhesion in SF-268 cells. Additionally, ß-2-himachalen-6-ol showed very low toxicity in mice with an LD50>6000mg/kg body weight. In conclusion, the present data demonstrate that ß-2-himachalen-6-ol is a potential multi-mechanistic chemotherapeutic drug with high potency and safety.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Daucus carota/química , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/efectos de los fármacos , Células CACO-2 , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Dosificación Letal Mediana , Espectroscopía de Resonancia Magnética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Invasividad Neoplásica , Neoplasias/patología , Fosforilación , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/toxicidad , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...