Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(2): 1109-1118, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164899

RESUMEN

Hygroscopic growth of adsorbed water films on clay particles underlies a number of environmental science questions, from the air quality and climate impacts of mineral dust aerosols to the hydrology and mechanics of unsaturated soils and sedimentary rocks. Here, we use molecular dynamics (MD) simulations to establish the relation between adsorbed water film thickness (h) and relative humidity (RH) or disjoining pressure (Π), which has long been uncertain due to factors including sensitivity to particle shape, surface roughness, and aqueous chemistry. We present a new MD simulation approach that enables precise quantification of Π in films up to six water monolayers thick. We find that the hygroscopicity of phyllosilicate mineral surfaces increases in the order mica < K-smectite < Na-smectite. The relationship between Π and h on clay surfaces follows a double exponential decay with e-folding lengths of 2.3 and 7.5 Å. The two decay length scales are attributed to hydration repulsion and osmotic phenomena in the electrical double layer (EDL) at the clay-water interface.


Asunto(s)
Minerales , Silicatos , Agua , Arcilla , Agua/química , Humectabilidad
2.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38270237

RESUMEN

In this work, we present a parameterization of Sr2+ and Ba2+ cations, which expands the alkali earth set of cations of the Madrid-2019 force field. We have tested the model against the experimental densities of eight different salts, namely, SrCl2, SrBr2, SrI2, Sr(NO3)2, BaCl2, BaBr2, BaI2, and Ba(NO3)2. The force field is able to reproduce the experimental densities of all these salts up to their solubility limit. Furthermore, we have computed the viscosities for two selected salts, finding that the experimental values are overestimated, but the predictions are still reasonable. Finally, the structural properties for all the salts have been calculated with this model and align remarkably well with experimental observations.

3.
J Phys Chem B ; 127(45): 9802-9812, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37937341

RESUMEN

The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.e., the relative solubilities of noble gas isotopes) and their sensitivities to the temperature and salinity. Here, we carry out a suite of classical molecular dynamics (MD) simulations and employ the theoretical method of quantum correction to estimate SEIEs for comparison with experimental observations. We find that classical MD simulations can accurately predict SEIEs for the isotopes of Ar, Kr, and Xe to order 0.01‰, on the scale of analytical uncertainty. However, MD simulations consistently overpredict the SEIEs of Ne and He by up to 40% of observed values. We carry out sensitivity tests at different temperatures, salinities, and pressures and employ different sets of interatomic potential parameters and water models. For all noble gas isotopes, the TIP4P water model is found to reproduce observed SEIEs more accurately than the SPC/E and TIP4P/ice models. Classical MD simulations also accurately capture the sign and approximate magnitude of temperature and salinity sensitivities of SEIEs for heavy noble gases. We find that experimental and modeled SEIEs generally follow an inverse-square mass dependence, which implies that the mean-square force experienced by a noble gas atom within a solvation shell is similar for all noble gases. This inverse-square mass proportionality is nearly exact for Ar, Kr, and Xe isotopes, but He and Ne exhibit a slightly weaker mass dependence. We hypothesize that the apparent dichotomy between He-Ne and Ar-Kr-Xe SEIEs may result from atomic size differences, whereby the smaller noble gases are more likely to spontaneously fit within cavities of water without breaking water-water H-bonds, thereby experiencing softer collisions during translation within a solvation shell. We further speculate that the overprediction of simulated He and Ne SEIEs may result from the neglection of higher-order quantum corrections or the overly stiff representation of van der Waals repulsion by the widely used Lennard-Jones 6-12 potential model. We suggest that new measurements of SEIEs of heavy and light noble gases may represent a novel set of constraints with which to refine hydrophobic solvation theories and optimize the set of interatomic potential models used in MD simulations of water and noble gases.

4.
ACS Nano ; 17(19): 19211-19223, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37774155

RESUMEN

Coupled thermal, hydraulic, mechanical, and chemical (THMC) processes, such as desiccation-driven cracking or chemically driven fluid flow, significantly impact the performance of composite materials formed by fluid-mediated nanoparticle assembly, including energy storage materials, ordinary Portland cement, bioinorganic nanocomposites, liquid crystals, and engineered clay barriers used in the isolation of hazardous wastes. These couplings are particularly important in the isolation of high-level radioactive waste (HLRW), where heat generated by radioactive decay can drive the temperature up to at least 373 K in the engineered barrier. Here, we use large-scale all-atom molecular dynamics simulations of hydrated smectite clay nanoparticle assemblages to predict the fundamental THMC properties of hydrated compacted clay over a wide range of temperatures (up to 373 K) and dry densities relevant to HLRW management. Equilibrium simulations of clay-water mixtures at different hydration levels are analyzed to quantify material properties, including thermal conductivity, heat capacity, thermal expansion, suction, water and ion self-diffusivity, and hydraulic conductivity. Predictions are validated against experimental results for the properties of compacted bentonite clay. Our results demonstrate the feasibility of using atomistic-level simulations of assemblages of clay nanoparticles on scales of tens of nanometers and nanoseconds to infer the properties of compacted bentonite on scales of centimeters and days, a direct upscaling over 6 orders of magnitude in space and 15 orders of magnitude in time.

5.
Environ Sci Technol ; 57(35): 13092-13103, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607019

RESUMEN

Interactions between water and organic molecules in sub-4 nm clusters play a significant role in the formation and growth of secondary organic aerosol (SOA) particles. However, a complete understanding of the relevant water microphysics has not yet been achieved due to challenges in the experimental characterization of soft nuclei. Here, we use molecular dynamics simulations to study the phase-mixing states, surface tension, water activity, and water accommodation coefficient of organic-water clusters representative of freshly nucleated SOA particles. Our results reveal large deviations from the behavior expected based on continuum theories. In particular, the phase-mixing state has a strong dependence on cluster size; surface tension displays a minimum at a specific organic-water mass ratio (morg/mw ∼ 4.5 in this study) corresponding to a minimum inhibition of droplet nucleation associated with the Kelvin effect; and the water accommodation coefficient increases by a factor of 2 with nanocluster hygroscopic growth, in agreement with recent experimental studies. Overall, our results yield parametric relations for water microphysical properties in sub-4 nm clusters and provide insight into the role of water in the initial stages of SOA nucleation and growth.


Asunto(s)
Agua , Tensión Superficial , Humectabilidad
6.
Environ Sci Technol ; 57(15): 6296-6308, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014786

RESUMEN

The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs. Here, we use established MD simulation approaches to examine the partitioning of 82 OCs, including many compounds of critical concern, at the water-air interface. Our predictions of the Henry's law constant (KH) and interfacial adsorption coefficients (Kiw, Kia) correlate strongly with experimental results, indicating that MD simulations can be used to predict KH, Kiw, and Kia values with mean absolute deviations of 1.1, 0.3, and 0.3 logarithmic units after correcting for systematic bias, respectively. A library of MD simulation input files for the examined OCs is provided to facilitate future investigations of the partitioning of these compounds in the presence of other phases.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Humanos
7.
J Phys Chem B ; 127(8): 1828-1841, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791328

RESUMEN

Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.


Asunto(s)
Alginatos , Agua , Biopelículas , Cationes , Termodinámica , Geles
8.
J Colloid Interface Sci ; 629(Pt A): 265-275, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36081206

RESUMEN

HYPOTHESIS: The migration of supercritical CO2 (scCO2) injected into underground reservoirs as part of carbon capture and storage is influenced by organic contamination affecting mineral wettability. Molecular dynamics (MD) simulations of relevant systems that incorporate representative organic solutes allow detailed investigation of changes in fundamental interfacial and capillary properties. EXPERIMENTS: We use MD simulations to explore the effects of four organic solutes (quinoline, decanoic acid, coronene, sorgoleone) on the wettability of quartz by water in the presence of scCO2. We examine the impacts of polar, alkyl, and aromatic moieties as well as fluid flow velocity at elevated temperatures and pressures. FINDINGS: Organic molecules accumulate at the water-CO2 interface, where they distribute according to their size and functional groups. Certain organics penetrate the adsorbed water film at the quartz-CO2 interface, revealing two modes of hydrogen bonding between polar organic functional group, water, and quartz surface -OH groups. Interfacial energies and contact angles are minimally impacted by organic adsorption at the water-CO2 interface, possibly due to simultaneous CO2 desorption. Non-equilibrium MD simulations reveal that flow-induced redistribution of organic compounds modulates the radii of curvature of the advancing and receding water-CO2 interfaces. Our results indicate that organic adsorption on water surfaces is likely ubiquitous during multi-phase flow in soils and sedimentary rocks, with implications for the mobilization and transport of organic compounds.


Asunto(s)
Cuarzo , Quinolinas , Agua , Dióxido de Carbono , Soluciones , Minerales , Suelo , Carbono
9.
Environ Sci Technol ; 56(22): 15261-15272, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269897

RESUMEN

Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2 removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2 removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.


Asunto(s)
Dióxido de Carbono , Tiempo (Meteorología) , Dióxido de Carbono/análisis , Cambio Climático , Suelo , Silicatos , Secuestro de Carbono
10.
Proc Natl Acad Sci U S A ; 119(30): e2122202119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858419

RESUMEN

Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.


Asunto(s)
Bacillus subtilis , Biopelículas , Estrés Mecánico , Bacillus subtilis/crecimiento & desarrollo , Medios de Cultivo , Modelos Teóricos , Porosidad
11.
J Phys Chem B ; 126(14): 2688-2698, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35362980

RESUMEN

In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm). This has been achieved using classical molecular dynamics simulations of hydrated Na-smectite, the prototypical swelling clay mineral. We observe a drastic (20-fold) and anisotropic decrease in the static relative permittivity of the system as the pore width decreases. This large decrement in static permittivity reflects a strong attenuation of the main Debye relaxation mode of liquid water. Remarkably, this strong attenuation entails very little change in the time scale of the collective relaxation. Our results indicate that water confined in charged nanopores is a distinct solvent with a much weaker collective nature than bulk liquid water, in agreement with recent observations of water in uncharged nanopores. Finally, we observe remarkable agreement between the dielectric properties of the simulated clay system against a compiled set of soil samples at various volumetric water contents. This implies that saturation may not be the sole property dictating the dielectric properties of soil samples, rather that the pore-size distribution of fully saturated nanopores may also play a critically important role.


Asunto(s)
Nanoporos , Agua , Arcilla , Simulación de Dinámica Molecular , Solventes
12.
J Phys Chem C Nanomater Interfaces ; 126(38): 16447-16460, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37881644

RESUMEN

The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.

13.
J Phys Chem C Nanomater Interfaces ; 126(49): 20990-20997, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37881773

RESUMEN

Swelling clay minerals control the hydrologic and mechanical properties of many soils, sediments, and sedimentary rocks. This important and well-known phenomenon remains challenging to predict because it emerges from complex multiscale couplings between aqueous chemistry and colloidal interaction mechanics in nanoporous clay assemblages, for which predictive models remain elusive. In particular, the predominant theory of colloidal interactions across fluid films, the widely used Derjaguin-Landau-Verwey-Overbeek model, fails to predict the ubiquitous existence of stable swelling states at interparticle distances below 3 nm that are stabilized by specific inter-atomic interactions in overlapping electrical double layers between the charged clay surfaces. Atomistic simulations have the potential to generate detailed insights into the mechanisms of these interactions. Recently, we developed a metadynamics-based molecular dynamics simulation methodology that can predict the free energy of interaction between parallel smectite clay particles in a wide range of interparticle distances (from 0.3 to 3 nm) and salinities (from 0.0 to 1.0 M NaCl). Here, we extend this work by characterizing the sensitivity of interparticle interactions to counterion type (Na, K, Ca). We establish a detailed picture of the free energy of interaction of parallel clay particles across water films as the sum of five interaction mechanisms with different sensitivities to salinity, counterion type, and interparticle distance.

14.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353907

RESUMEN

Classical electrical double layer (EDL) models are foundational to the representation of atomistic structure and reactivity at charged interfaces. An important limitation to these models is their dependence on a mean-field approximation that is strictly valid for dilute aqueous solutions. Theoretical efforts to overcome this limitation are severely impeded by the lack of visualization of the structure over a wide range of ion concentration. Here, we report the salinity-dependent evolution of EDL structure at negatively charged mica-water interfaces, revealing transition from the Langmuir-type charge compensation in dilute salt solutions to nonclassical charge overscreening in highly concentrated solutions. The EDL structure in this overcharging regime is characterized by the development of both lateral positional correlation between adsorbed ions and vertical layering of alternating cations and anions reminiscent of the structures of strongly correlated ionic liquids. These EDL ions can spontaneously grow into nanocrystalline nuclei of ionic compounds at threshold ion concentrations that are significantly lower than the bulk solubility limit. These results shed light on the impact of ion cooperativity that drives heterogeneous nonclassical behaviors of the EDL in high-salinity conditions.

15.
Phys Rev E ; 103(6-1): 063106, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271761

RESUMEN

Detailed understanding of the couplings between fluid flow and solid deformation in porous media is crucial for the development of novel technologies relating to a wide range of geological and biological processes. A particularly challenging phenomenon that emerges from these couplings is the transition from fluid invasion to fracturing during multiphase flow. Previous studies have shown that this transition is highly sensitive to fluid flow rate, capillarity, and the structural properties of the porous medium. However, a comprehensive characterization of the relevant fluid flow and material failure regimes does not exist. Here, we used our newly developed multiphase Darcy-Brinkman-Biot framework to examine the transition from drainage to material failure during viscously stable multiphase flow in soft porous media in a broad range of flow, wettability, and solid rheology conditions. We demonstrate the existence of three distinct material failure regimes controlled by nondimensional numbers that quantify the balance of viscous, capillary, and structural forces in the porous medium, in agreement with previous experiments and granular simulations. To the best of our knowledge, this study is the first to effectively decouple the effects of viscous and capillary forces on fracturing mechanics. Last, we examine the effects of consolidation or compaction on said dimensional numbers and the system's propensity to fracture.

16.
Nat Commun ; 12(1): 622, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504777

RESUMEN

Soil absorbs about 20% of anthropogenic carbon emissions annually, and clay is one of the key carbon-capture materials. Although sorption to clay is widely assumed to strongly retard the microbial decomposition of soil organic matter, enhanced degradation of clay-associated organic carbon has been observed under certain conditions. The conditions in which clay influences microbial decomposition remain uncertain because the mechanisms of clay-organic carbon interactions are not fully understood. Here we reveal the spatiotemporal dynamics of carbon sorption and release within model clay aggregates and the role of enzymatic decomposition by directly imaging a transparent smectite clay on a microfluidic chip. We demonstrate that clay-carbon protection is due to the quasi-irreversible sorption of high molecular-weight sugars within clay aggregates and the exclusion of bacteria from these aggregates. We show that this physically-protected carbon can be enzymatically broken down into fragments that are released into solution. Further, we suggest improvements relevant to soil carbon models.

17.
J Colloid Interface Sci ; 585: 337-346, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33302050

RESUMEN

Molecular dynamics (MD) simulations are used to predict the partitioning of per- and polyfluoroalkyl substances (PFASs) to smectite clay, a high surface area adsorbent ubiquitous in temperate soils. Simulated systems model a stack of flexible smectite lamellae in contact with a bulk aqueous reservoir containing PFAS molecules. Perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) are simulated at various aqueous chemistry conditions to examine the effect of PFAS size, salinity, and coordinating cation type (K+, Na+, and Ca2+) on adsorption. The metadynamics technique is employed to facilitate the exploration of the simulation cell and to reconstruct the underlying free energy landscape. Adsorption is favorable on the hydrophobic domains of the external basal surfaces with the fluorinated chain adopting a flat orientation on the surface. Analysis of the adsorption energetics reveals large favorable entropic contributions to adsorption. The enthalpy of adsorption is unfavorable, though much less so in the presence of Ca2+ due to stabilizing 'lateral cation bridging' interactions between divalent cations and PFAS sulfonate head groups. Overall, this research advances the mechanistic understanding of PFAS-smectite interactions and provides new insights that could help inform fate and transport models and the development of adsorbents and remediation techniques.

18.
J Colloid Interface Sci ; 584: 610-621, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33223241

RESUMEN

Colloidal interactions between clay nanoparticles have been studied extensively because of their strong influence on the hydrology and mechanics of many soils and sedimentary media. The predominant theory used to describe these interactions is the Derjaguin-Landau-Verwey-Overbeek (DLVO) model, a framework widely applied in colloidal and interfacial science that accurately predicts the interactions between charged surfaces across water films at distances greater than ~ 3 nm (i.e., ten water monolayers). Unfortunately, the DLVO model is inaccurate at the shorter interparticle distances that predominate in most subsurface environments. For example, it inherently cannot predict the existence of equilibrium states wherein clay particles adopt interparticle distances equal to the thickness of one, two, or three water monolayers. Molecular dynamics (MD) simulations have the potential to provide detailed information on the free energy of interaction between clay nanoparticles; however, they have only been used to examine clay swelling and aggregation at interparticle distances below 1 nm. We present the first MD simulation predictions of the free energy of interaction of smectite clay nanoparticles in the entire range of interparticle distances from the large interparticle distances where the DLVO model is accurate (>3 nm) to the short-range swelling states where non-DLVO interactions predominate (<1 nm). Our simulations examine a range of salinities (0.0 to 1.0 M NaCl) and counterion types (Na, K, Ca) and establish a detailed picture of the breakdown of the DLVO model. In particular, they confirm previous theoretical suggestions of the existence of a strong non-DLVO attraction with a range of ~ 3 nm arising from specific ion-clay Coulomb interactions in the electrical double layer.

19.
J Environ Radioact ; 210: 105809, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30340873

RESUMEN

Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radioisótopos de Cesio , Arcilla , Japón , Minerales , Contaminantes Radiactivos del Suelo
20.
J Environ Radioact ; 189: 135-145, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29665576

RESUMEN

Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.


Asunto(s)
Radioisótopos de Cesio/química , Minerales/química , Modelos Químicos , Contaminantes Radiactivos del Suelo/química , Adsorción , Silicatos de Aluminio , Radioisótopos de Cesio/análisis , Arcilla , Accidente Nuclear de Fukushima , Japón , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...