Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 19(8): 2869-2885, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642900

RESUMEN

Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process. In contrast to ATSC-containing constructs, which did not induce bone formation in an ectopic mouse model, BMSC constructs consistently did so. Gene expression analysis revealed that human BMSCs, concomitantly with host murine progenitors, differentiated into the osteogenic lineage early post-implantation. In contrast, ATSCs differentiated later, when few implanted viable cells remained post-implantation, while the host murine cells did not differentiate. Comparison of the inflammatory profile in the cell constructs indicated concomitant upregulation of some human and murine inflammatory genes in the ATSC-constructs compared to the BMSC-constructs during the first-week post-implantation. The high level of chemokine production by the ATSCs was confirmed at the gene and protein levels before implantation. The immune cell recruitment within the constructs was then explored post-implantation. Higher numbers of TRAP-/ MRC1 (CD206) + multinucleated giant cells, NOS2 + M1, and ARG1 + M2 macrophages were present in the ATSC constructs than in the BMSC constructs. These results proved that ATSCs are a transient source of inflammatory cytokines promoting a transient immune response post-implantation; this milieu correlates with impaired osteogenic differentiation of both the implanted ATSCs and the host osteoprogenitor cells.


Asunto(s)
Tejido Adiposo , Osteogénesis , Humanos , Ratones , Animales , Osteogénesis/genética , Células Cultivadas , Células Madre , Inmunidad Innata
2.
Acta Biomater ; 109: 254-266, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194263

RESUMEN

The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triply-periodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro- to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants. STATEMENT OF SIGNIFICANCE: Architectural features are known to be key parameters for successful bone repair using synthetic bioceramic bone graft. So far, conventional manufacturing techniques, lacking reproducibility and complete control of the implant macro-architecture, impeded the exploration of complex architectures, such as triply periodic minimal surfaces (TPMS), which are foreseen to have an unrivaled potential for bone repair. Using a new additive manufacturing process, macroporous TPMS-based bioceramics implants were produced in calcium phosphate, characterized and implanted in a femoral defect in rats. The results showed, for the first time, that such macroporous implants can be successfully implanted in anatomical load-bearing sites when a cortical-like outer shell is added. This outer shell also concentrated new bone formation in the implant center, without affecting new bone quantity or maturity.


Asunto(s)
Huesos/fisiología , Cerámica/química , Durapatita/química , Prótesis e Implantes , Animales , Fuerza Compresiva , Femenino , Ensayo de Materiales , Oseointegración/fisiología , Osteogénesis/fisiología , Porosidad , Ratas Endogámicas Lew
3.
Tissue Eng Part A ; 25(7-8): 642-651, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30311857

RESUMEN

IMPACT STATEMENT: A strategy for improving the efficacy of stem cell-based bone tissue engineering (TE) constructs is to combine bone morphogenetic protein-2 (BMP-2) with multipotent stromal cells (MSC). Previous studies on the potential cooperative effect of BMP-2 with human multipotent stromal cells (hMSCs) on bone formation in vivo have, however, shown contradictory results likely due to the various and/or inappropriate BMP-2 doses. Our results provided evidence that the addition of BMP-2 at low dose only was beneficial to improve the osteogenic potential of hMSCs-containing TE constructs, whereas BMP-2 delivered at high dose overcame the advantage of combining this growth factor with hMSCs. This new knowledge will help in designing improved combination strategies for tissue regeneration with better clinical outcomes.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Proteína Morfogenética Ósea 2/administración & dosificación , Células Cultivadas , Humanos , Osteogénesis/efectos de los fármacos
4.
J Tissue Eng Regen Med ; 12(3): e1511-e1524, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28875591

RESUMEN

In the present study, we evaluated the benefits of an adipogenic predifferentiation, the pathway most closely related to osteoblastogenesis, on the pro-osteogenic potential of human adult multipotent bone marrow stromal cells (hBMSCs), both in vitro and in vivo. Adipogenic differentiation of hBMSCs for 14 days resulted in a heterogeneous cell population from which the most adipogenic-committed cells were eliminated by their lack of readhesion ability. Our results provided evidence that the select adherent adipogenic differentiated hBMSCs (sAD+ cells) express a gene profile characteristic of both adipogenic and osteogenic lineages. In vitro, when cultured in osteogenic medium, sAD+ differentiated along the osteogenic lineage faster than undifferentiated hBMSCs. In vivo, in an ectopic mouse model, sAD+ exhibited a significantly higher bone formation capability compared with undifferentiated hBMSCs. We sought, then, to investigate the underlying mechanisms responsible for such beneficial effects of adipogenic predifferentiation on bone formation and found that this outcome was not linked to a better cell survival post-implantation. The secretome of sAD+ was both proangiogenic and chemoattractant, but its potential did not supersede the one of undifferentiated hBMSCs. However, using co-culture systems, we observed that the sAD+ paracrine factors were pro-osteogenic on undifferentiated hBMSCs. In conclusion, adipogenic priming endows hBMSCs with high osteogenic potential as well as pro-osteogenic paracrine-mediated activity. This preconditioning appears as a promising strategy for bone tissue engineering technology in order to improve the hBMSC osteogenic potency in vivo.


Asunto(s)
Adipogénesis , Huesos/fisiología , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Adipogénesis/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Técnicas de Cocultivo , Femenino , Humanos , Isquemia/patología , Células Madre Mesenquimatosas/ultraestructura , Ratones Desnudos , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos
5.
Tissue Eng Part A ; 20(13-14): 1827-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24447025

RESUMEN

The present study aimed at elucidating the effect of local pH in the extracellular microenvironment of tissue-engineered (TE) constructs on bone cell functions pertinent to new tissue formation. To this aim, we evaluated the osteogenicity process associated with bone constructs prepared from human Bone marrow-derived mesenchymal stem cells (hBMSC) combined with 45S5 bioactive glass (BG), a material that induces alkalinization of the external medium. The pH measured in cell-containing BG constructs was around 8.0, that is, 0.5 U more alkaline than that in two other cell-containing materials (hydroxyapatite/tricalcium phosphate [HA/TCP] and coral) constructs tested. When implanted ectopically in mice, there was no de novo bone tissue in the BG cell-containing constructs, in contrast to results obtained with either HA/TCP or coral ceramics, which consistently promoted the formation of ectopic bone. In addition, the implanted 50:50 composites of both HA/TCP:BG and coral:BG constructs, which displayed a pH of around 7.8, promoted 20-30-fold less amount of bone tissue. Interestingly, hBMSC viability in BG constructs was not affected compared with the other two types of material constructs tested both in vitro and in vivo. Osteogenic differentiation (specifically, the alkaline phosphatase [ALP] activity and gene expression of RUNX2, ALP, and BSP) was not affected when hBMSC were maintained in moderate alkaline pH (≤7.90) external milieu in vitro, but was dramatically inhibited at higher pH values. The formation of mineralized nodules in the extracellular matrix of hBMSC was fully inhibited at alkaline (>7.54) pH values. Most importantly, there is a pH range (specifically, 7.9-8.27) at which hBMSC proliferation was not affected, but the osteogenic differentiation of these cells was inhibited. Altogether, these findings provided evidence that excessive alkalinization in the microenvironment of TE constructs (resulting, for example, from material degradation) affects adversely the osteogenic differentiation of osteoprogenitor cells.


Asunto(s)
Microambiente Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Adolescente , Adulto , Animales , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Microambiente Celular/efectos de los fármacos , Medios de Cultivo , Femenino , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Implantes Experimentales , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Desnudos , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Osteogénesis/efectos de los fármacos , Tejido Subcutáneo/efectos de los fármacos
6.
Tissue Eng Part A ; 18(19-20): 2084-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22578283

RESUMEN

Local tissue ischemia is a prime cause responsible for the massive cell death in tissue-engineered (TE) constructs observed postimplantation. To assess the impact of ischemia on the death of implanted human multipotent stromal cells (hMSCs), which have great potential for repairing damaged tissues, we hereby investigated the in vivo temporal and spatial fate of human Luc-GFP-labeled MSCs within fibrin gel/coral scaffolds subcutaneously implanted in nude mice. In vivo bioluminescence imaging monitoring and histological analyses of the constructs tested confirmed the irremediable death of hMSCs over 30 days postimplantation. The kinetics of expression of three hypoxic/ischemic markers (HIF-1α, LDH-A, and BNIP3) was also monitored. Our results provided evidence that hMSCs located within the core of implanted constructs died faster and predominantly and strongly expressed the aforementioned ischemic markers. In contrast, cells located in the outer regions of TE constructs were reperfused by neovascularization and were still viable (as evidenced by their ex-vivo proliferative potential) at day 15 postimplantation. These results support the explanation that in the central part of the constructs tested, death of hMSCs was due to ischemia, whereas in the periphery of these constructs, cell death was due to another mechanism that needs to be elucidated.


Asunto(s)
Hipoxia de la Célula/fisiología , Células Madre Mesenquimatosas/citología , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Ingeniería de Tejidos/métodos
7.
Tissue Eng Part C Methods ; 16(3): 447-58, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19624260

RESUMEN

Bioluminescent quantification of viable cells inside three-dimensional porous scaffolds was performed in vitro and in vivo. The assay quantified the bioluminescence of murine stem (C3H10T1/2) cells tagged with the luciferase gene reporter and distributed inside scaffolds of either soft, translucent, AN69 polymeric hydrogel or hard, opaque, coral ceramic materials. Quantitative evaluation of bioluminescence emitted from tagged cells adhering to these scaffolds was performed in situ using either cell lysates and a luminometer or intact cells and a bioluminescence imaging system. Despite attenuation of the signal when compared to cells alone, the bioluminescence correlated with the number of cells (up to 1.5 x 10(5)) present on each material scaffold tested, both in vitro and noninvasively in vivo (subcutaneous implants in the mouse model). The noninvasive bioluminescence measurement technique proved to be comparable to the cell-destructive bioluminescence measurement technique. Monitoring the kinetics of luciferase expression via bioluminescence enabled real-time assessment of cell survival and proliferation on the scaffolds tested over prolonged (up to 59 days) periods of time. This novel, sensitive, easy, fast-to-implement, quantitative bioluminescence assay has great, though untapped, potential for screening and determining noninvasively the presence of viable cells on biomaterial constructs in the tissue engineering and tissue regeneration fields.


Asunto(s)
Células Madre/citología , Ingeniería de Tejidos , Apoptosis , Diferenciación Celular , Citometría de Flujo , Humanos , Luminiscencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA