Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951306

RESUMEN

The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH3-2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of VOC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.

2.
J Mol Graph Model ; 131: 108792, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38797085

RESUMEN

In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.

3.
J Mol Model ; 30(6): 190, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809306

RESUMEN

CONTEXT: For the advancement in fields of organic and perovskite solar cells, various techniques of structural alterations are being employed on previously reported chromophores. In this study, the end-capped engineering is carried out on DBT-4F (R) by modifying terminal acceptors to improve optoelectronic and photovoltaic attributes. Seven molecules (AD1-AD7) are modeled using different push-pull acceptors. DFT/B3LYP/6-31G along with its time-dependent approach (TD-DFT) are on a payroll to investigate ground state geometries, absorption maxima (λmax), energy gap (Eg), excitation energy (Ex), internal reorganization energy, light harvesting efficiency (LHE), dielectric constant, open circuit voltage (VOC), fill factor (FF), etc. of OSCs. AD1 displayed the lowest band gap (1.76 eV), highest λmax (876 nm), lowest Ex (1.41 eV), and lowest binding energy (0.21 eV). Among various calculated parameters, all of the sketched molecules demonstrated greater dielectric constant when compared to R. The highest dielectric constant was exhibited by AD3 (56.26). AD5 exhibited maximum LHE (0.9980). Lower reorganization energies demonstrated improved charge mobility. AD5 and AD7 (1.63 and 1.68 eV) have higher values of VOC than R (1.51 eV). All novel molecules having outperforming attributes will be better candidates to enhance the efficacy of OSCs for future use. METHODS: Precisely, a DFT and TD-DFT analysis on all of the proposed organic molecules were conducted, using the functional MPW1PW91 at 6-31G (d,p) basis set to examine their optoelectronic aspects, additionally the solvent-state computations were studied with a TD-SCF simulation. For all these simulations, Guassian 09 and GuassView 5.0 were employed. Moreover, the Origin 6.0, Multiwfn 3.8, and PyMOlyze 1.1 software were utilized for the visual depiction of the graphs of absorption, TDM, and DOS, respectively of the studied molecules. A number of crucial aspects such as FMOs, bandgaps, light-harvesting efficiency, electrostatic potential, dipole moment, ionization potential, open-circuit voltage, fill factor, binding energy, interaction coefficient, chemical hardness-softness, and electrophilicity index were also investigated for the studied molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...