Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654015

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Prostatic Neoplasms , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/diet therapy , Prostatic Neoplasms/microbiology , Animals , Humans , Mice , Feces/microbiology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/administration & dosage , Mice, Inbred C57BL , Fatty Acids, Unsaturated/metabolism
3.
Microbiol Spectr ; 11(3): e0479322, 2023 06 15.
Article En | MEDLINE | ID: mdl-37199657

The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the ß-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.


Dissolved Organic Matter , Water , RNA, Ribosomal, 16S/genetics , Aquatic Organisms , Carbon/analysis
4.
Sci Rep ; 13(1): 2396, 2023 02 10.
Article En | MEDLINE | ID: mdl-36765081

Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota has on insect health and growth performance remains largely unknown. This study clarifies the role of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq to measure differentially expressed transcripts between axenic and conventional condition using DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included the immune system, the lipid metabolism, and the nervous system. Expression profile showed a shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, further demonstrating the importance of host-microbiota interactions on host ontology and health. These results open the door to optimization of zootechnical properties in alternative animal protein production, biowaste revalorization and recycling.


Diptera , Microbiota , Animals , Larva , Animal Feed/analysis , Diptera/physiology , Microbiota/genetics , Lipid Metabolism
5.
Microbiol Spectr ; 10(6): e0206422, 2022 12 21.
Article En | MEDLINE | ID: mdl-36445161

Fish bacterial communities provide functions critical for their host's survival in contrasting environments. These communities are sensitive to environmental-specific factors (i.e., physicochemical parameters, bacterioplankton), and host-specific factors (i.e., host genetic background). The relative contribution of these factors shaping Amazonian fish bacterial communities is largely unknown. Here, we investigated this topic by analyzing the gill bacterial communities of 240 wild flag cichlids (Mesonauta festivus) from 4 different populations (genetic clusters) distributed across 12 sites in 2 contrasting water types (ion-poor/acidic black water and ion-rich/circumneutral white water). Transcriptionally active gill bacterial communities were characterized by a 16S rRNA metabarcoding approach carried on RNA extractions. They were analyzed using comprehensive data sets from the hosts genetic background (Genotyping-By-Sequencing), the bacterioplankton (16S rRNA) and a set of 34 environmental parameters. Results show that the taxonomic structure of 16S rRNA gene transcripts libraries were significantly different between the 4 genetic clusters and also between the 2 water types. However, results suggest that the contribution of the host's genetic background was relatively weak in comparison to the environment-related factors in structuring the relative abundance of different active gill bacteria species. This finding was also confirmed by a mixed-effects modeling analysis, which indicated that the dissimilarity between the taxonomic structure of bacterioplanktonic communities possessed the best explicative power regarding the dissimilarity between gill bacterial communities' structure, while pairwise fixation indexes (FST) from the hosts' genetic data only had a weak explicative power. We discuss these results in terms of bacterial community assembly processes and flag cichlid fish ecology. IMPORTANCE Host-associated microbial communities respond to factors specific to the host physiology, genetic backgrounds, and life history. However, these communities also show different degrees of sensitivity to environment-dependent factors, such as abiotic physico-chemical parameters and ecological interactions. The relative importance of host- versus environment-associated factors in shaping teleost bacterial communities is still understudied and is paramount for their conservation and aquaculture. Here, we studied the relative importance of host- and environment-associated factors structuring teleost bacterial communities using gill samples from a wild Amazonian teleost model (Mesonauta festivus) sampled in contrasting habitats along a 1500 km section of the Amazonian basin, thus ensuring high genetic diversity. Results showed that the contribution of the host's genetic background was weak compared to environment-related bacterioplanktonic communities in shaping gill bacterial assemblages, thereby suggesting that our understanding of teleost microbiome assembly could benefit from further studies focused on the ecological interplay between host-associated and free-living communities.


Gills , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Gills/chemistry , Gills/microbiology , Fishes/genetics , Fishes/microbiology , Microbiota/physiology , Water , Genomics , Bacteria/genetics
6.
Microorganisms ; 9(11)2021 Nov 02.
Article En | MEDLINE | ID: mdl-34835409

Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe-immunity axis. We conducted cage experiments on newly emerged bees that were 4-6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee's symbiotic defense systems' disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.

7.
Microorganisms ; 8(8)2020 Jul 29.
Article En | MEDLINE | ID: mdl-32751209

Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.

8.
Appl Environ Microbiol ; 86(16)2020 08 03.
Article En | MEDLINE | ID: mdl-32503908

Teleost fish represent an invaluable repertoire of host species to study the factors shaping animal-associated microbiomes. Several studies have shown that the phylogenetic structure of the fish gut microbiome is driven by species-specific (e.g., host ancestry, genotype, or diet) and habitat-specific (e.g., hydrochemical parameters and bacterioplankton composition) factors. However, our understanding of other host-associated microbial niches, such as the skin mucus microbiome, remains limited. The goal of our study was to explore simultaneously the phylogenetic structure of the fish skin mucus and gut microbiome and compare the effect of species- and habitat-specific drivers on the structure of microbial communities in both tissues. We sampled 114 wild fish from 6 populations of 3 ecologically and phylogenetically contrasting Amazonian teleost species. Water samples were collected at each site, and 10 physicochemical parameters were characterized. The skin mucus, gut, and water microbial communities were characterized using a metabarcoding approach targeting the V3-V4 regions of the 16S rRNA. Our results showed a significant distinction between the phylogenetic profile and diversity of the microbiome from each microbial niche. Skin mucus and bacterioplankton communities were significantly closer in composition than gut and free-living communities. Species-specific factors mostly modulated gut bacterial communities, while the skin mucus microbiome was predominantly associated with environmental physicochemistry and bacterioplankton community structure. These results suggest that the variable skin mucus community is a relevant target for the development of microbial biomarkers of environmental status, while the more conserved gut microbiome is better suited to study long-term host-microbe interactions over evolutionary time scales.IMPORTANCE Whether host-associated microbiomes are mostly shaped by species-specific or environmental factors is still unresolved. In particular, it is unknown to what extent microbial communities from two different host tissues from the same host respond to these factors. Our study is one of the first to focus on the microbiome of teleost fish to shed a light on this topic as we investigate how the phylogenetic structure of microbial communities from two distinct fish tissues are shaped by species- and habitat-specific factors. Our study showed that in contrast to the teleost gut microbiome, skin mucus communities are highly environment dependent. This result has various implications: (i) the skin mucus microbiome should be used, rather than the gut, to investigate bacterial biomarkers of ecosystem perturbance in the wild, and (ii) the gut microbiome is better suited for studies of the drivers of phylosymbiosis, or the coevolution of fish and their symbionts.


Bacteria/isolation & purification , Characiformes/microbiology , Cichlids/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions , Skin/microbiology , Animals , Bacteria/classification , Brazil , Ecosystem , Mucous Membrane/microbiology , Phylogeny , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Species Specificity
9.
Sci Total Environ ; 586: 976-984, 2017 May 15.
Article En | MEDLINE | ID: mdl-28214113

Byproducts can provide an important amount of nutrients for crops and improve soils properties. According to their C/N, nitrogen (N) mineralization or immobilization may be observed after their application onto agricultural land. Therefore, an indicator is needed to assess byproducts N availability for crops. Thirty-seven studies from the scientific literature on N mineralization or immobilization after application to agricultural land under a wide range of climatic and experimental conditions were collected in order to elaborate models assessing non-composted byproducts N availability during the first growing season according to the C/N ratio. Four methods were used to evaluate N availability: incubation, apparent N recovery (ANR), relative N effectiveness (RNE) and fertilizer equivalence (FE). Since ANR was the model most related to C/N (R2=0.77), this model was used to define six categories of C/N. Results expressed in terms of FE were converted into RNE values. Although RNE is less precise than ANR, efficiencies of byproducts were expressed in terms of average RNE because it is the most appropriate for fertilization grids. Therefore, depending on C/N of non-composted byproducts, six categories were defined. i) high mineralization: +66% RNE and 5≤C/N, ii) moderate mineralization: +33% RNE and 5140.


Fertilizers , Nitrogen/analysis , Soil/chemistry , Agriculture , Crops, Agricultural , Models, Theoretical
...