Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 57(38): 5616-5628, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30204426

RESUMEN

Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, we demonstrated the involvement of mNT in a specific cytosolic pathway dedicated to the reactivation of oxidatively damaged cytosolic aconitase by cluster transfer. In vitro studies using apo-ferredoxin (FDX) reveal that mNT uses an Fe-based redox switch mechanism to regulate the transfer of its cluster. Using the "gold standard" cluster recipient protein, FDX, we show that this transfer is direct and that only one of the two mNT clusters is transferred when the second one is decomposed. Combining complementary biophysical and biochemical approaches, we show that pH affects both the sensitivity of the cluster to O2 and dimer stability. Around physiological cytosolic pH, the ability of mNT to transfer its cluster is tightly regulated by the pH. Finally, mNT is extremely resistant to H2O2 compared to ISCU and SufB, two other Fe-S cluster transfer proteins, which is consistent with its involvement in a repair pathway of stress-damaged Fe-S proteins. Taken together, our results suggest that the ability of mNT to transfer its cluster to recipient proteins is not only controlled by the redox state of its cluster but also tightly modulated by the pH of the cytosol. We propose that when pathophysiological conditions such as cancer and neurodegenerative diseases dysregulate cellular pH homeostasis, this pH-dependent regulation of mNT is lost, as is the regulation of cellular pathways under the control of mNT.


Asunto(s)
Ferredoxinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Azufre/metabolismo , Ferredoxinas/química , Humanos , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/química , Oxidación-Reducción , Multimerización de Proteína
2.
PLoS One ; 13(3): e0194782, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29596470

RESUMEN

Biogenesis of iron-sulfur clusters (ISC) is essential to almost all forms of life and involves complex protein machineries. This process is initiated within the mitochondrial matrix by the ISC assembly machinery. Cohort and case report studies have linked mutations in ISC assembly machinery to severe mitochondrial diseases. The voltage-dependent anion channel (VDAC) located within the mitochondrial outer membrane regulates both cell metabolism and apoptosis. Recently, the C-terminal truncation of the VDAC1 isoform, termed VDAC1-ΔC, has been observed in chemoresistant late-stage tumor cells grown under hypoxic conditions with activation of the hypoxia-response nuclear factor HIF-1α. These cells harbored atypical enlarged mitochondria. Here, we show for the first time that depletion of several proteins of the mitochondrial ISC machinery in normoxia leads to a similar enlarged mitochondria phenotype associated with accumulation of VDAC1-ΔC. This truncated form of VDAC1 accumulates in the absence of HIF-1α and HIF-2α activations and confers cell resistance to drug-induced apoptosis. Furthermore, we show that when hypoxia and siRNA knock-down of the ISC machinery core components are coupled, the cell phenotype is further accentuated, with greater accumulation of VDAC1-ΔC. Interestingly, we show that hypoxia promotes the downregulation of several proteins (ISCU, NFS1, FXN) involved in the early steps of mitochondrial Fe-S cluster biogenesis. Finally, we have identified the mitochondria-associated membrane (MAM) localized Fe-S protein CISD2 as a link between ISC machinery downregulation and accumulation of anti-apoptotic VDAC1-ΔC. Our results are the first to associate dysfunction in Fe-S cluster biogenesis with cleavage of VDAC1, a form which has previously been shown to promote tumor resistance to chemotherapy, and raise new perspectives for targets in cancer therapy.


Asunto(s)
Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Eliminación de Secuencia , Azufre/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Caspasa 3/metabolismo , Activación Enzimática/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Hipoxia Tumoral/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/genética
3.
Methods Enzymol ; 595: 83-106, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882209

RESUMEN

MitoNEET is the first identified Fe-S protein anchored to mammalian outer mitochondrial membranes with the vast majority of the protein polypeptide located in the cytosol, including its [2Fe-2S] cluster-binding domain. The coordination of the cluster is unusual and involves three cysteines and one histidine. MitoNEET is capable of transferring its redox-active Fe-S cluster to a bacterial apo-ferredoxin in vitro even under aerobic conditions, unlike other Fe-S transfer proteins such as ISCU. This specificity suggests its possible involvement in Fe-S repair after oxidative and/or nitrosative stress. Recently, we identified cytosolic aconitase/iron regulatory protein 1 (IRP1) as the first physiological protein acceptor of the mitoNEET Fe-S cluster in an Fe-S repair process. This chapter describes methods to study in vitro mitoNEET Fe-S cluster transfer/repair to a bacterial ferredoxin used as a model aporeceptor and in a more comprehensive manner to cytosolic aconitase/IRP1 after a nitrosative stress using in vitro, in cellulo, and in vivo methods.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Aconitato Hidratasa/química , Animales , Cisteína/metabolismo , Citosol/enzimología , Escherichia coli , Ferredoxinas/metabolismo , Histidina/metabolismo , Humanos , Hierro/química , Proteína 1 Reguladora de Hierro/química , Proteínas Hierro-Azufre/química , Membranas Mitocondriales/metabolismo , Estrés Nitrosativo , Oxidación-Reducción
4.
J Biol Chem ; 291(14): 7583-93, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26887944

RESUMEN

Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S](+)with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the "active state," which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a "dormant form." Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Oxidación-Reducción
5.
Redox Biol ; 7: 21-29, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26629948

RESUMEN

Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe-S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe-S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe-S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe-S cluster - and of other ROS-sensitive enzymes - could inhibit parasite development.


Asunto(s)
Antimaláricos/farmacología , Primaquina/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Aconitato Hidratasa/metabolismo , Citocromo-B(5) Reductasa/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Chaperonas Moleculares/genética , Estrés Oxidativo , Saccharomyces cerevisiae/crecimiento & desarrollo , Superóxido Dismutasa/genética
6.
J Biol Chem ; 289(41): 28070-86, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25012650

RESUMEN

In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.


Asunto(s)
Proteína 1 Reguladora de Hierro/química , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HeLa , Células Hep G2 , Homeostasis , Humanos , Peróxido de Hidrógeno/química , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Óxido Nítrico/química , Oxidación-Reducción , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
7.
Redox Biol ; 2: 777-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009779

RESUMEN

Peroxiredoxins (Prxs) are a family of thiol peroxidases that participate in hydroperoxide detoxification and regulates H2O2 signaling. In mammals, the four typical 2-Cys Prxs (Prxs 1, 2, 3 and 4) are known to regulate H2O2-mediated intracellular signaling. The 2 catalytic cysteines of 2-Cys Prxs, the so-called peroxidatic and resolving cysteines, are regulatory switches that are prone to react with redox signaling molecules. We investigated the respective modifications induced by H2O2, NO and H2S in the murine macrophage cell line RAW264.7 by mass spectrometry and immunoblotting after separating 2-Cys Prxs by one-dimensional or two-dimensional PAGE. We found that H2S, unlike NO, does not prevent H2O2-mediated sulfinylation of 2-Cys Prxs and that Prx2 is more sensitive to NO-mediated protection against sulfinylation by peroxides. We also observed that cells exposed to exogenous NO, released by Cys-SNO or DETA-NO, or producing NO upon stimulation by IFN-γ and LPS, present an acidic form of Prx1 whose modification is consistent with S-homocysteinylation of its peroxidatic cysteine.


Asunto(s)
Peroxirredoxinas/metabolismo , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Cisteína/química , Cisteína/metabolismo , Electroforesis en Gel Bidimensional , Peróxido de Hidrógeno/toxicidad , Sulfuro de Hidrógeno/toxicidad , Interferón gamma/farmacología , Lipopolisacáridos/toxicidad , Ratones , Óxido Nítrico/toxicidad , Peroxirredoxinas/análisis , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Sulfhidrilo/química
8.
PLoS One ; 8(12): e82874, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349383

RESUMEN

Important for both host and pathogen survivals, iron is a key factor in determining the outcome of an infectious process. Iron with-holding, including sequestration inside tissue macrophages, is considered an important strategy to fight infection. However, for intra-macrophagic pathogens, such as Mycobacterium avium, host defence may depend on intracellular iron sequestration mechanisms. Ferritin, the major intracellular iron storage protein, plays a critical role in this process. In the current study, we studied ferritin expression in mouse bone marrow-derived macrophages upon infection with M. avium. We found that H-ferritin is selectively increased in infected macrophages, through an up-regulation of gene transcription. This increase was mediated by the engagement of Toll like receptor-2, and was independent of TNF-alpha or nitric oxide production. The formation of H-rich ferritin proteins and the consequent iron sequestration may be an important part of the panoply of antimicrobial mechanisms of macrophages.


Asunto(s)
Apoferritinas/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium avium , Receptor Toll-Like 2/metabolismo , Animales , Células Cultivadas , Ratones , Óxido Nítrico/biosíntesis , Activación Transcripcional , Factor de Necrosis Tumoral alfa/biosíntesis
9.
J Biol Chem ; 286(26): 22846-54, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21566147

RESUMEN

In mammals, iron regulatory proteins (IRPs) 1 and 2 posttranscriptionally regulate expression of genes involved in iron metabolism, including transferrin receptor 1, the ferritin (Ft) H and L subunits, and ferroportin by binding mRNA motifs called iron responsive elements (IREs). IRP1 is a bifunctional protein that mostly exists in a non-IRE-binding, [4Fe-4S] cluster aconitase form, whereas IRP2, which does not assemble an Fe-S cluster, spontaneously binds IREs. Although both IRPs fulfill a trans-regulatory function, only mice lacking IRP2 misregulate iron metabolism. NO stimulates the IRE-binding activity of IRP1 by targeting its Fe-S cluster. IRP2 has also been reported to sense NO, but the intrinsic function of IRP1 and IRP2 in NO-mediated regulation of cellular iron metabolism is controversial. In this study, we exposed bone marrow macrophages from Irp1(-/-) and Irp2(-/-) mice to NO and showed that the generated apo-IRP1 was entirely responsible for the posttranscriptional regulation of transferrin receptor 1, H-Ft, L-Ft, and ferroportin. The powerful action of NO on IRP1 also remedies the defects of iron storage found in IRP2-null bone marrow macrophages by efficiently reducing Ft overexpression. We also found that NO-dependent IRP1 activation, resulting in increased iron uptake and reduced iron sequestration and export, maintains enough intracellular iron to fuel the Fe-S cluster biosynthetic pathway for efficient restoration of the citric acid cycle aconitase in mitochondria. Thus, IRP1 is the dominant sensor and transducer of NO for posttranscriptional regulation of iron metabolism and participates in Fe-S cluster repair after exposure to NO.


Asunto(s)
Células de la Médula Ósea/metabolismo , Factores Relajantes Endotelio-Dependientes/farmacología , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/farmacología , Animales , Apoferritinas/genética , Apoferritinas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/genética , Ratones , Ratones Noqueados , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
10.
Free Radic Biol Med ; 51(1): 107-14, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21466852

RESUMEN

Peroxiredoxins (Prx's) are a family of peroxidases that maintain thiol homeostasis by catalyzing the reduction of organic hydroperoxides, H2O2, and peroxynitrite. Under conditions of oxidative stress, eukaryotic Prx's can be inactivated by the substrate-dependent oxidation of the catalytic cysteine to sulfinic acid, which may regulate the intracellular messenger function of H2O2. A small redox protein, sulfiredoxin (Srx), conserved only in eukaryotes, has been shown to reduce sulfinylated 2-Cys Prx's, adding to the complexity of the H2O2 signaling network. In this study, we addressed the regulation of Srx expression in immunostimulated primary macrophages that produce both reactive oxygen species (ROS) and nitric oxide (NO(•)). We present genetic evidence that NO-mediated Srx up-regulation is mediated by the transcription factor nuclear factor erythroid 2-related factor (Nrf2). We also show that the NO(•)/Srx pathway inhibits generation of ROS. These results reveal a link between innate immunity and H2O2 signaling. We propose that an NO(•)/Nrf2/Srx pathway participates in the maintenance of redox homeostasis in cytokine-activated macrophages and other inflammatory settings.


Asunto(s)
Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Animales , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Inmunidad Innata , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Reacción en Cadena de la Polimerasa , Especies Reactivas de Oxígeno/metabolismo
11.
PLoS One ; 4(7): e6379, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19629184

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA), the most common form of recessive ataxia, is due to reduced levels of frataxin, a highly conserved mitochondrial iron-chaperone involved in iron-sulfur cluster (ISC) biogenesis. Most patients are homozygous for a (GAA)(n) expansion within the first intron of the frataxin gene. A few patients, either with typical or atypical clinical presentation, are compound heterozygous for the GAA expansion and a micromutation. METHODOLOGY: We have developed a new strategy to generate murine cellular models for FRDA: cell lines carrying a frataxin conditional allele were used in combination with an EGFP-Cre recombinase to create murine cellular models depleted for endogenous frataxin and expressing missense-mutated human frataxin. We showed that complete absence of murine frataxin in fibroblasts inhibits cell division and leads to cell death. This lethal phenotype was rescued through transgenic expression of human wild type as well as mutant (hFXN(G130V) and hFXN(I154F)) frataxin. Interestingly, cells expressing the mutated frataxin presented a FRDA-like biochemical phenotype. Though both mutations affected mitochondrial ISC enzymes activities and mitochondria ultrastructure, the hFXN(I154F) mutant presented a more severe phenotype with affected cytosolic and nuclear ISC enzyme activities, mitochondrial iron accumulation and an increased sensitivity to oxidative stress. The differential phenotype correlates with disease severity observed in FRDA patients. CONCLUSIONS: These new cellular models, which are the first to spontaneously reproduce all the biochemical phenotypes associated with FRDA, are important tools to gain new insights into the in vivo consequences of pathological missense mutations as well as for large-scale pharmacological screening aimed at compensating frataxin deficiency.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Mutación Missense , Animales , Heterocigoto , Ratones , Ratones Transgénicos , Frataxina
12.
Free Radic Biol Med ; 47(6): 794-802, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19540914

RESUMEN

Peroxiredoxins (PRXs) are thiol peroxidases associated with many cellular functions including proliferation, cell cycle, apoptosis, and differentiation. There is also increasing evidence that these ubiquitous antioxidant enzymes control H(2)O(2) signaling in eukaryotes. Here, we provide evidence that the LPS/TLR4 and the Th1 cytokine IFN-gamma pathways induce expression of PRX5, a potent peroxide and peroxynitrite reductase, in primary macrophages. Furthermore, deletion of TRIF, MyD88, or type I IFN receptor revealed that the LPS/TLR4-dependent increase in PRX5 expression is mediated by a TRIF-dependent/IFN-beta-independent pathway. IFN-gamma-dependent induction of the PRX5 gene was markedly reduced in MyD88(-/-) and TNF(-/-) macrophages. Moreover, addition of exogenous TNF allowed the recovery of full PRX5 expression in both MyD88(-/-) and TNF(-/-) cells stimulated with IFN-gamma, suggesting that basal TNF produced in an MyD88-dependent manner contributes to PRX5 induction. Downstream of the TLR pathways, we have explored the role of MAPK activation and found that p38 and JNK mainly contribute to PRX5 up-regulation in immunostimulated macrophages. Expression of PRX5 is thus responsive to innate immunity signals, and we propose that PRX5 is an additional host defense weapon of activated macrophages.


Asunto(s)
Interferón gamma/metabolismo , Macrófagos/metabolismo , Peroxirredoxinas/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células Cultivadas , Inmunidad Innata , Interferón gamma/inmunología , Lipopolisacáridos/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Óxido Nítrico Sintasa de Tipo II/genética , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Receptores de Interferón/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
FEBS J ; 276(4): 1036-47, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19154341

RESUMEN

Friedreich ataxia (FRDA) is a rare hereditary neurodegenerative disease characterized by progressive ataxia and cardiomyopathy. The cause of the disease is a defect in mitochondrial frataxin, an iron chaperone involved in the maturation of Fe-S cluster proteins. Several human diseases, including cardiomyopathies, have been found to result from deficiencies in the activity of specific proteases, which have important roles in protein turnover and in the removal of damaged or unneeded protein. In this study, using the muscle creatine kinase mouse heart model for FRDA, we show a clear progressive increase in protein levels of two important mitochondrial ATP-dependent proteases, Lon and ClpP, in the hearts of muscle creatine kinase mutants. These proteases have been shown to degrade unfolded and damaged proteins in the matrix of mitochondria. Their upregulation, which was triggered at a mid-stage of the disease through separate pathways, was accompanied by an increase in proteolytic activity. We also demonstrate a simultaneous and significant progressive loss of mitochondrial Fe-S proteins with no substantial change in their mRNA level. The correlative effect of Lon and ClpP upregulation on loss of mitochondrial Fe-S proteins during the progression of the disease may suggest that Fe-S proteins are potential targets of Lon and ClpP proteases in FRDA.


Asunto(s)
Forma MM de la Creatina-Quinasa/fisiología , Endopeptidasa Clp/biosíntesis , Proteínas de Unión a Hierro/fisiología , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/fisiología , Proteasa La/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Forma MM de la Creatina-Quinasa/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Ratones , Ratones Transgénicos , Mutación , Miocardio/enzimología , Regulación hacia Arriba , Frataxina
14.
Chembiochem ; 9(9): 1472-80, 2008 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-18491327

RESUMEN

Macrophages are key cells of the immune system. Immunologically activated macrophages are known to release a cocktail of reactive oxygen and nitrogen species. In this work, RAW 264.7 macrophages were activated by interferon-gamma and lipopolysaccharide, and the reactive mixture released by single cells was analyzed, in real time, by amperometry at platinized carbon microelectrodes. In comparison with untreated macrophages, significant increases in amperometric responses were observed for activated macrophages. Nitric oxide (NO*), nitrite (NO2*-), and peroxynitrite (ONOO-) were the main reactive species detected. The amounts of these reactive species were quantified, and their average fluxes released by a single, activated macrophage were evaluated. The detection of ONOO- is of particular interest, as its role and implications in various physiological conditions have been widely debated. Herein, direct evidence for the formation of ONOO- in stimulated macrophages is presented. Finally, the presence of 1400W, a selective inducible nitric oxide synthase (iNOS) inhibitor, led to an almost complete attenuation of the amperometric response of activated RAW 264.7 cells. The majority of the reactive species released by a macrophage are thus likely to be derived from NO* and superoxide (O2*-) co-produced by iNOS.


Asunto(s)
Macrófagos/inmunología , Macrófagos/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Electroquímica , Fluorometría , Depuradores de Radicales Libres/metabolismo , Inmunización , Interferón gamma/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Nitroprusiato/análisis , Nitroprusiato/metabolismo , Ácido Peroxinitroso/metabolismo , Especies de Nitrógeno Reactivo/análisis , Especies Reactivas de Oxígeno/análisis , Factores de Tiempo
15.
J Biol Chem ; 282(50): 36199-205, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17921138

RESUMEN

Reactive oxygen species and nitric oxide (NO) are capable of both mediating redox-sensitive signal transduction and eliciting cell injury. The interplay between these messengers is quite complex, and intersection of their signaling pathways as well as regulation of their fluxes requires tight control. In this regard, peroxiredoxins (Prxs), a recently identified family of six thiol peroxidases, are central because they reduce H2O2, organic peroxides, and peroxynitrite. Here we provide evidence that endogenously produced NO participates in protection of murine primary macrophages against oxidative and nitrosative stress by inducing Prx I and VI expression at mRNA and protein levels. We also show that NO prevented the sulfinylation-dependent inactivation of 2-Cys Prxs, a reversible overoxidation that controls H2O2 signaling. In addition, studies using macrophages from sulfiredoxin (Srx)-deficient mice indicated that regeneration of 2-Cys Prxs to the active form was dependent on Srx. Last, we show that NO increased Srx expression and hastened Srx-dependent recovery of 2-Cys Prxs. We therefore propose that modulation by NO of Prx expression and redox state, as well as up-regulation of Srx expression, constitutes a novel pathway that contributes to antioxidant response and control of H2O2-mediated signal transduction in mammals.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Macrófagos/enzimología , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Peroxiredoxina VI/biosíntesis , Peroxirredoxinas/biosíntesis , Transducción de Señal/fisiología , Animales , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Óxido Nítrico/inmunología , Oxidantes/inmunología , Oxidantes/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxiredoxina VI/genética , Peroxiredoxina VI/inmunología , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Ácido Peroxinitroso/inmunología , Ácido Peroxinitroso/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
16.
Arch Biochem Biophys ; 465(1): 282-92, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17603005

RESUMEN

Biogenesis of iron-sulfur (Fe-S) clusters in mammals involves a complex mitochondrial machinery that provides inorganic sulfide and iron for their assembly and insertion into apo-proteins. Mechanisms of Fe-S cluster assembly are just being unraveled, and regulation of the genes of this machinery remains unknown. In this study, we report that expression of two essential components of the Fe-S machinery, the cysteine desulfurase Nfs1 and its scaffold protein partner IscU, is down-regulated at both mRNA and protein levels when murine macrophages are physiologically stimulated with IFN-gamma and LPS. Regulation did not rely on cluster disassembly or NO production because exposure of cells to exogenous sources of NO did not alter Nfs1 expression, while it converted cytosolic Fe-S aconitase into its apo-form and because macrophages from NOS2 deficient mice displayed Nfs1 down-regulation. While IFN-gamma alone induced Nfs1 protein instability, LPS triggered a delayed decline of Nfs1, rather involving transcriptional events or mRNA instability. Also, the expression of IscU was down-regulated in IFN-gamma- and/or LPS-stimulated macrophages independently of NO, pointing to a general mechanism for marshalling the regulation of the Fe-S cluster assembly machinery in macrophages exposed to inflammatory stimuli.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Interferón gamma/administración & dosificación , Proteínas Hierro-Azufre/metabolismo , Lipopolisacáridos/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Liasas de Carbono-Azufre/administración & dosificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL
17.
J Biol Chem ; 281(35): 25398-406, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16787928

RESUMEN

In prokaryotes and yeast, the general mechanism of biogenesis of iron-sulfur (Fe-S) clusters involves activities of several proteins among which IscS and Nfs1p provide, through cysteine desulfuration, elemental sulfide for Fe-S core formation. Although these proteins have been well characterized, the role of their mammalian homolog in Fe-S cluster biogenesis has never been evaluated. We report here the first functional study that implicates the putative cysteine desulfurase m-Nfs1 in the biogenesis of both mitochondrial and cytosolic mammalian Fe-S proteins. Depletion of m-Nfs1 in cultured fibroblasts through small interfering RNA-based gene silencing significantly inhibited the activities of mitochondrial NADH-ubiquinone oxidoreductase (complex I) and succinate-ubiquinone oxidoreductase (complex II) of the respiratory chain, as well as aconitase of the Krebs cycle, with no alteration in their protein levels. Activity of cytosolic xanthine oxidase, which holds a [2Fe-2S] cluster, was also specifically reduced, and iron-regulatory protein-1 was converted from its [4Fe-4S] aconitase form to its apo- or RNA-binding form. Reduction of Fe-S enzyme activities occurred earlier and more markedly in the cytosol than in mitochondria, suggesting that there is a mechanism that primarily dedicates m-Nfs1 to the biogenesis of mitochondrial Fe-S clusters in order to maintain cell survival. Finally, depletion of m-Nfs1, which conferred on apo-IRP-1 a high affinity for ferritin mRNA, was associated with the down-regulation of the iron storage protein ferritin.


Asunto(s)
Liasas de Carbono-Azufre/fisiología , Citosol/metabolismo , Proteínas Hierro-Azufre/química , Mitocondrias/metabolismo , Interferencia de ARN , Animales , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Regulación hacia Abajo , Complejo I de Transporte de Electrón/química , Complejo II de Transporte de Electrones/química , Ferritinas/química , Ratones , Mitocondrias/enzimología , Células 3T3 NIH , Xantina Oxidasa/química
18.
Chembiochem ; 7(4): 653-61, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16502474

RESUMEN

Macrophages are key cells of the immune system. During phagocytosis, the macrophage engulfs a foreign bacterium, virus, or particle into a vacuole, the phagosome, wherein oxidants are produced to neutralize and decompose the threatening element. These oxidants derive from in situ production of superoxide and nitric oxide by specific enzymes. However, the chemical nature and sequence of release of these compounds is far from being completely determined. The aim of the present work was to study the fundamental mechanism of oxidant release by macrophages at the level of a single cell, in real time and quantitatively. The tip of a microelectrode was positioned at a micrometric distance from a macrophage in a culture to measure oxidative-burst release by the cell when it was submitted to physical stimulation. The ensuing release of electroactive reactive oxygen and nitrogen species was detected by amperometry and the exact nature of the compounds was characterized through comparison with in vitro electrochemical oxidation of H2O2, ONOO-, NO*, and NO2(-) solutions. These results enabled the calculation of time variations of emission flux for each species and the reconstruction of the original flux of production of primary species, O2*- and NO*, by the macrophage.


Asunto(s)
Macrófagos/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Membrana Celular/fisiología , Células Cultivadas , Radicales Libres/análisis , Radicales Libres/metabolismo , Peróxido de Hidrógeno/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Microelectrodos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Ácido Peroxinitroso/metabolismo , Estimulación Física , Factores de Tiempo
19.
Free Radic Biol Med ; 38(10): 1392-400, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15855057

RESUMEN

In this study we examined the gene expression pattern of *NO-dependent genes in U937 and Mono Mac 6 monocytes exposed to the synthetic NO-donor DPTA-NO using microarray technology. cDNA microarray data were validated by Northern blot analysis and quantitative real-time PCR. This approach allowed the identification of 17 *NO-sensitive genes that showed at least a twofold difference in expression, in both U937 cells and Mono Mac 6 cells exposed to 500 microM DPTA-NO for 4 h. NO-stimulated genes belong to various functional groups, including transcription factors, signaling molecules, and cytokines. Among the selected genes, 11 (ATF-4, c-maf, SGK-1, PBEF, ATPase 8, NADH dehydrogenase 4, STK6, TRAF4-associated factor 1, molybdopterin synthase, CKS1, and CIDE-B) have not been previously reported to be sensitive to *NO. Because several *NO-stimulated genes are transcription factors, we analyzed the mRNA expression profile in U937 cells exposed to DPTA-NO for 14 h. We found that long-term *NO treatment influenced transcription rates of a rather limited set of genes, including CIDE-B, BNIP3, p21/Cip1, molybdopterin synthase, and TRAF4-associated factor 1. To accelerate formation of nitrosating species, U937 cells were exposed to DPTA-NO along with suboptimal concentrations of 2-phenyl-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (PTIO). PTIO-mediated increase in nitrosating species remarkably enhanced *NO-dependent induction of IL-8, p21/Cip1, and MKP-1 and built a specific gene expression profile.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Óxido Nítrico/farmacología , Alquenos/farmacología , Biomarcadores/metabolismo , Northern Blotting , Óxidos N-Cíclicos/farmacología , ADN Complementario , Humanos , Imidazoles/farmacología , Monocitos/citología , Donantes de Óxido Nítrico/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Biochem Biophys Res Commun ; 327(1): 349-55, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15629469

RESUMEN

Iron regulatory protein 1 (IRP1) is a bifunctional [4Fe-4S] protein that controls iron homeostasis. Switching off its function from an aconitase to an apo-IRP1 interacting with iron-responsive element-containing mRNAs depends on the reduced availability of iron in labile iron pool (LIP). Although the modulation of IRP1 by nitric oxide has been characterized, its impact on LIP remains unknown. Here, we show that inhibition of IRP1 aconitase activity and induction of its IRE-binding activity during exposure of L5178Y mouse lymphoma cells to NO are associated with an increase in LIP levels. Removal of NO resulted in a reverse regulation of IRP1 activities accompanied by a decrease of LIP. The increased iron burden in LIP caused by NO exacerbated hydrogen peroxide-induced genotoxicity in L5178Y cells. We demonstrate that the increase in LIP levels in response to chronic but not burst exposure of L5178Y cells to NO is associated with alterations in the expression of proteins involved in iron metabolism.


Asunto(s)
Daño del ADN , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , ARN/metabolismo , Espermina/análogos & derivados , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Ferritinas/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1 , Proteínas de la Membrana , Ratones , Óxido Nítrico/farmacología , Óxidos de Nitrógeno , Subunidades de Proteína , Receptores de Transferrina/metabolismo , Espermina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...