Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 3873, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890202

RESUMEN

Antarctic Bottom Water (AABW) stores heat and gases over decades to centuries after contact with the atmosphere during formation on the Antarctic shelf and subsequent flow into the global deep ocean. Dense water from the western Ross Sea, a primary source of AABW, shows changes in water properties and volume over the last few decades. Here we show, using multiple years of moored observations, that the density and speed of the outflow are consistent with a release from the Drygalski Trough controlled by the density in Terra Nova Bay (the "accelerator") and the tidal mixing (the "brake"). We suggest tides create two peaks in density and flow each year at the equinoxes and could cause changes of ~ 30% in the flow and density over the 18.6-year lunar nodal tide. Based on our dynamic model, we find tides can explain much of the decadal variability in the outflow with longer-term changes likely driven by the density in Terra Nova Bay.

3.
Sci Rep ; 11(1): 2246, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500521

RESUMEN

Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope to investigate the water properties of the bottom water exiting the region at Cape Adare. Salinity of the bottom water has increased in 2018 from the previous measurements in 2008-2010, consistent with the observed salinity increase in the Ross Sea. We find High Salinity Shelf Water from the Drygalski Trough contributes to two pulses of dense water at Cape Adare. The timing and magnitude of the pulses is largely explained by an inverse relationship with the tidal velocity in the Ross Sea. We suggest that the diurnal and low frequency tides in the western Ross Sea may control the magnitude and timing of the dense water outflow.

4.
Sci Rep ; 7(1): 14527, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109445

RESUMEN

Accelerated warming of western boundary currents due to the strengthening of subtropical gyres has had cascading effects on coastal ecosystems and is widely expected to result in further tropicalization of temperate regions. Predicting how species and ecosystems will respond requires a better understanding of the variability in ocean warming in complex boundary current regions. Using three ≥50 year temperature records we demonstrate high variability in the magnitude and seasonality of warming in the Southwest Pacific boundary current region. The greatest rate of warming was evident off eastern Tasmania (0.20 °C decade-1), followed by southern New Zealand (0.10 °C decade-1), while there was no evidence of annual warming in northeastern New Zealand. This regional variability in coastal warming was also evident in the satellite record and is consistent with expected changes in regional-scale circulation resulting from increased wind stress curl in the South Pacific subtropical gyre. Warming trends over the satellite era (1982-2016) were considerably greater than the longer-term trends, highlighting the importance of long-term temperature records in understanding climate change in coastal regions. Our findings demonstrate the spatial and temporal complexity of warming patterns in boundary current regions and challenge widespread expectations of tropicalization in temperate regions under future climate change.

5.
Chaos ; 12(2): 373-381, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12779567

RESUMEN

The horizontal stirring properties of the flow in a region of the East Australian Current are calculated. A surface velocity field derived from remotely sensed data, using the maximum cross correlation method, is integrated to derive the distribution of the finite-time Lyapunov exponents. For the region studied (between latitudes 36 degrees S and 41 degrees S and longitudes 150 degrees E and 156 degrees E) the mean Lyapunov exponent during 1997 is estimated to be lambda( infinity )=4x10(-7) s(-1). This is in close agreement with the few other measurements of stirring rates in the surface ocean which are available. Recent theoretical results on the multifractal spectra of advected reactive tracers are applied to an analysis of a sea-surface temperature image of the study region. The spatial pattern seen in the image compares well with the pattern seen in an advected tracer with a first-order response to changes in surface forcing. The response timescale is estimated to be 20 days. (c) 2002 American Institute of Physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...