Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Comp Biol ; 63(2): 407-427, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37263784

RESUMEN

Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.


Asunto(s)
Feromonas , Olfato , Animales , Feromonas/fisiología , Olfato/fisiología , Hormonas , Peces , Percepción
2.
Transl Oncol ; 32: 101662, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004490

RESUMEN

INTRODUCTION: Standard-of-care systemic chemotherapies for pancreatic ductal adenocarcinoma (PDAC) currently have limited clinical benefits, in addition to causing adverse side effects in many patients. One factor known to contribute to the poor chemotherapy response is the poor drug diffusion into PDAC tumors. Novel treatment methods are therefore drastically needed to improve targeted delivery of treatments. Here, we evaluated the efficacy of the 3DNA® Nanocarrier (3DNA) platform to direct delivery of therapeutics to PDAC tumors in vivo. MATERIALS AND METHODS: A panel of PDAC cell lines and a patient tissue microarray were screened for established tumor-specific proteins to identify targeting moieties for active targeting of the 3DNA. NRG mice with or without orthotopic MIA PaCa-2-luciferase PDAC tumors were treated intraperitoneally with 100 µl of fluorescently labeled 3DNA. RESULTS: Folic acid and transferrin receptors were significantly elevated in PDAC compared to normal pancreas. Accordingly, both folic acid- and transferrin-conjugated 3DNA treatments significantly increased delivery of 3DNA specifically to tumors in comparison to unconjugated 3DNA treatment. In the absence of tumors, there was an increased clearance of both folic acid-conjugated 3DNA and unconjugated 3DNA, compared to the clearance rate in tumor-bearing mice. Lastly, delivery of siLuciferase by folic acid-conjugated 3DNA in an orthotopic model of luciferase-expressing PDAC showed significant and prolonged suppression of luciferase protein expression and activity. CONCLUSION: Our study progresses the 3DNA technology as a reliable and effective treatment delivery platform for targeted therapeutic approaches in PDAC.

3.
Pharmaceutics ; 14(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35890393

RESUMEN

3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.

4.
Nat Cancer ; 3(7): 852-865, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35681100

RESUMEN

Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers.


Asunto(s)
Isocitrato Deshidrogenasa , Neoplasias Pancreáticas , Regulación Alostérica , Inhibidores Enzimáticos/farmacología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Nutrientes , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
5.
J Ocul Pharmacol Ther ; 38(6): 404-411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377237

RESUMEN

Purpose: To compare a novel, sustained release formulation and a bolus injection of a targeted nanocarrier for the ability to specifically deplete cells responsible for the development of posterior capsule opacification (PCO) in week-long, dynamic cell cultures. Methods: A novel, injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer hydrogel was engineered for the sustained release of targeted, nucleic acid nanocarriers loaded with cytotoxic doxorubicin (G8:3DNA:Dox). Human rhabdomyosarcoma (RD) cells were used due to their expression of brain-specific angiogenesis inhibitor 1 (BAI1), a specific marker for the myofibroblasts responsible for PCO. Under constant media flow, nanocarriers were injected into cell cultures as either a bolus or within the hydrogel. Cells were fixed and stained every other day for 7 days to compare targeted depletion of BAI1+ cells. Results: The formulation transitions to a gel at physiological temperatures, is optically clear, noncytotoxic, and can release G8:3DNA:Dox nanocarriers for up to 4 weeks. In RD cell cultures, G8:3DNA:Dox nanocarriers specifically eliminated BAI1+ cells. The bolus nanocarrier dose showed significantly reduced cell depletion overtime, while the sustained release of nanocarriers showed increased cell depletion over time. By day 7, <2% of BAI1+ cells were depleted by the bolus injection and 74.2% BAI1+ cells were targeted by the sustained release of nanocarriers. Conclusions: The sustained release of nanocarriers from the hydrogel allows for improved therapeutic delivery in a dynamic system. This method can offer a more effective and efficient method of prophylactically treating PCO after cataract surgery.


Asunto(s)
Opacificación Capsular , Hidrogeles , ADN , Preparaciones de Acción Retardada , Doxorrubicina , Humanos , Ácido Láctico , Polietilenglicoles
6.
Artículo en Inglés | MEDLINE | ID: mdl-34121131

RESUMEN

CREB (cAMP response element-binding) transcription factors are conserved markers of memory formation in the brain and peripheral circuits. We provide immunohistochemical evidence of CREB phosphorylation in the dwarf cuttlefish, Sepia bandensis, following the inaccessible prey (IP) memory experiment. During the IP experiment, cuttlefish are shown prey enclosed in a transparent tube, and tentacle strikes against the tube decrease over time as the cuttlefish learns the prey is inaccessible. The cues driving IP learning are unclear but may include sensory inputs from arms touching the tube. The neural activity marker, anti-phospho-CREB (anti-pCREB) was used to determine whether IP training stimulated cuttlefish arm sensory neurons. pCREB immunoreactivity occurred along the oral surface of the arms, including the suckers and epithelial folds surrounding the suckers. pCREB increased in the epithelial folds and suckers of trained cuttlefish. We found differential pCREB immunoreactivity along the distal-proximal axis of trained arms, with pCREB concentrated distally. Unequal CREB phosphorylation occurred among the 4 trained arm pairs, with arm pairs 1 and 2 containing more pCREB. The resulting patterns of pCREB in trained arms suggest that the arms obtain cues that may be salient for learning and memory of the IP experiment.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Sepia/fisiología , Animales , Extremidades/fisiología , Fosforilación
7.
Bioeng Transl Med ; 6(2): e10208, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34027094

RESUMEN

Biodistribution studies are essential in drug carrier design and translation, and radiotracing provides a sensitive quantitation for this purpose. Yet, for biodegradable formulations, small amounts of free-label signal may arise prior to or immediately after injection in animal models, causing potentially confounding biodistribution results. In this study, we refined a method to overcome this obstacle. First, we verified free signal generation in animal samples and then, mimicking it in a controllable setting, we injected mice intravenously with a radiolabeled drug carrier formulation (125I-antibody/3DNA) containing a known amount of free radiolabel (125I), or free 125I alone as a control. Corrected biodistribution data were obtained by separating the free radiolabel from blood and organs postmortem, using trichloroacetic acid precipitation, and subtracting the confounding signal from each tissue measurement. Control free 125I-radiolabel was detected at ≥85% accuracy in blood and tissues, validating the method. It biodistributed very heterogeneously among organs (0.6-39 %ID/g), indicating that any free 125I generated in the body or present in an injected formulation cannot be simply corrected to the free-label fraction in the original preparation, but the free label must be empirically measured in each organ. Application of this method to the biodistribution of 125I-antibody/3DNA, including formulations directed to endothelial target ICAM-1, showed accurate classification of free 125I species in blood and tissues. In addition, this technique rendered data on the in vivo degradation of the traced agents over time. Thus, this is a valuable technique to obtain accurate measurements of biodistribution using 125I and possibly other radiotracers.

8.
Clin Pathol ; 13: 2632010X20951812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32924009

RESUMEN

The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase 2 (IDO2) has been identified as an immunomodulatory agent promoting autoimmunity in preclinical models. As such, finding ways to target the expression of IDO2 in B cells promises a new avenue for therapy for debilitating autoimmune disorders such as rheumatoid arthritis. IDO2, like many drivers of disease, is an intracellular protein expressed in a range of cells, and thus therapeutic inhibition of IDO2 requires a mechanism for targeting this intracellular protein in specific cell types. DNA nanostructures are a promising novel way of delivering small molecule drugs, antibodies, or siRNAs to the cytoplasm of a cell. These soluble, branched structures can carry cell-specific targeting moieties along with their therapeutic deliverable. Here, we examined a 3DNA nanocarrier specifically targeted to B cells with an anti-CD19 antibody. We find that this 3DNA is successfully delivered to and internalized in B cells. To test whether these nanostructures can deliver an efficacious therapeutic dose to alter autoimmune responses, a modified anti-IDO2 siRNA was attached to B-cell-directed 3DNA nanocarriers and tested in an established preclinical model of autoimmune arthritis, KRN.g7. The anti-IDO2 3DNA formulation ameliorates arthritis in this system, delaying the onset of joint swelling and reducing total arthritis severity. As such, a 3DNA nanocarrier system shows promise for delivery of targeted, specific, low-dose therapy for autoimmune disease.

9.
PLoS One ; 15(7): e0234792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32614850

RESUMEN

The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of >5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95-100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues.


Asunto(s)
Proteínas Angiogénicas/biosíntesis , Miofibroblastos/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Sustitución de Aminoácidos , Proteínas Angiogénicas/química , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Encéfalo/citología , Proteínas Portadoras/análisis , Linaje de la Célula , Epítopos/inmunología , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas del Ojo/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Desarrollo de Músculos , Proteína MioD/análisis , Especificidad de Órganos , Conformación Proteica , Dominios Proteicos , Conejos , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Secuencias Repetitivas de Aminoácido , Piel/citología , Especificidad de la Especie , Tatuaje , Adulto Joven
10.
Learn Behav ; 48(4): 420-431, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32500485

RESUMEN

Measuring behavior in the form of numerical data is difficult, especially for studies involving complex actions. DanioVision is a closed-chamber system that utilizes subject tracking to comprehensively record behavior, while also mitigating the influence of environmental conditions. We used DanioVision to record activity of juvenile dwarf cuttlefish (Sepia bandensis) during the inaccessible prey (IP) procedure, a memory experiment in which cuttlefish learn to inhibit capture attempts towards inaccessible prey. By quantifying total movement and orientation of the body, we found that cuttlefish show memory by selectively inhibiting tentacle strikes without reducing total movement, or orientation towards the prey. We show that DanioVision can be used to assess multiple components of dynamic responses that are not measurable by direct observation alone and provide new evidence that strike inhibition is the product of learning, and not motor fatigue.


Asunto(s)
Sepia , Animales , Decapodiformes , Aprendizaje , Memoria , Conducta Predatoria
11.
J Control Release ; 305: 41-49, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31100312

RESUMEN

DNA nanostructures hold great potential for drug delivery. However, their specific targeting is often compromised by recognition by scavenger receptors involved in clearance. In our previous study in cell culture, we showed targeting specificity of a 180 nm, 4-layer DNA-built nanocarrier called 3DNA coupled with antibodies against intercellular adhesion molecule-1 (ICAM-1), a glycoprotein overexpressed in the lungs in many diseases. Here, we examined the biodistribution of various 3DNA formulations in mice. A formulation consisted of 3DNA whose outer-layer arms were hybridized to secondary antibody-oligonucleotide conjugates. Anchoring IgG on this formulation reduced circulation and kidney accumulation vs. non-anchored IgG, while increasing liver and spleen clearance, as expected for a nanocarrier. Anchoring anti-ICAM changed the biodistribution of this antibody similarly, yet this formulation specifically accumulated in the lungs, the main ICAM-1 target. Since lung targeting was modest (2-fold specificity index over IgG formulation), we pursued a second preparation involving direct hybridization of primary antibody-oligonucleotide conjugates to 3DNA. This formulation had prolonged stability in serum and showed a dramatic increase in lung distribution: the specificity index was 424-fold above a matching IgG formulation, 144-fold more specific than observed for PLGA nanoparticles of similar size, polydispersity, ζ-potential and antibody valency, and its lung accumulation increased with the number of anti-ICAM molecules per particle. Immunohistochemistry showed that anti-ICAM and 3DNA components colocalized in the lungs, specifically associating with endothelial markers, without apparent histological changes. The degree of in vivo targeting for anti-ICAM/3DNA-nanocarriers is unprecedented, for which this platform technology holds great potential to develop future therapeutic applications.


Asunto(s)
ADN/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Inmunoconjugados/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Animales , ADN/farmacocinética , Portadores de Fármacos/farmacocinética , Inmunoconjugados/farmacocinética , Ratones , Ratones Endogámicos C57BL , Nanoestructuras/análisis , Ratas , Distribución Tisular
12.
Invest Ophthalmol Vis Sci ; 60(6): 1813-1823, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042787

RESUMEN

Purpose: Posterior capsule opacification (PCO) is a vision-impairing disease that occurs in some adults and most children after cataract surgery. Contractile myofibroblasts contribute to PCO by producing wrinkles in the lens capsule that scatter light. Myofibroblasts in the lens originate from Myo/Nog cells named for their expression of the MyoD transcription factor and bone morphogenetic protein inhibitor noggin. In this study we tested the effects of depleting Myo/Nog cells on development of PCO. Methods: Myo/Nog cells were eliminated by injecting the G8 antibody conjugated to 3DNA nanocarriers for the cytotoxin doxorubicin (G8:3DNA:Dox) during cataract surgery in rabbits. The severity of PCO was scored by slit lamp analysis, gross and histologic observation, and immunofluorescence localization of α-smooth muscle actin. Results: G8:3DNA:Dox specifically induced cell death in Myo/Nog cells in the lens. None of the lenses administered G8:3DNA containing 9 to 36 µM doxorubicin developed greater than trace levels of central PCO and few myofibroblasts were present on the capsule. Less than 9% of these lenses exhibited greater than mild levels of peripheral PCO. Doxorubucin itself reduced PCO; however, myofibroblasts and wrinkles were abundant in the lens, and off-target effects were observed in the ciliary processes and cornea. Conclusions: Myo/Nog cells are the primary source of myofibroblasts in the lens after cataract surgery. Targeted depletion of Myo/Nog cells has potential for preventing PCO and preserving vision.


Asunto(s)
Opacificación Capsular/patología , Proteínas Portadoras/metabolismo , Proteína MioD/metabolismo , Miofibroblastos/patología , Cápsula Posterior del Cristalino/patología , Animales , Opacificación Capsular/metabolismo , Modelos Animales de Enfermedad , Femenino , Miofibroblastos/metabolismo , Cápsula Posterior del Cristalino/metabolismo , Conejos
13.
PLoS One ; 7(2): e31241, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359580

RESUMEN

Inflammatory Bowel Disease--comprised of Crohn's Disease and Ulcerative Colitis (UC)--is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis.


Asunto(s)
Colitis Ulcerosa/diagnóstico , Estudio de Asociación del Genoma Completo , MicroARNs/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Humanos , Inflamación/inmunología , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
14.
J Mol Diagn ; 14(1): 12-21, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22074760

RESUMEN

Although a number of technical parameters are now being examined to optimize microRNA profiling experiments, it is unknown whether reagent or component changes to the labeling step affect starting RNA requirements or microarray performance. Human brain/lung samples were each labeled in duplicate, at 1.0, 0.5, 0.2, and 0.1 µg of total RNA, by means of two kits that use the same labeling procedure but differ in the reagent composition used to label microRNAs. Statistical measures of reliability and validity were used to evaluate microarray data. Cross-platform confirmation was accomplished using TaqMan microRNA assays. Synthetic microRNA spike-in experiments were also performed to establish the microarray signal dynamic range using the ligation-modified kit. Technical replicate correlations of signal intensity values were high using both kits, but improved with the ligation-modified assay. The drop in detection call sensitivity and miRNA gene list correlations, when using reduced amounts of standard-labeled RNA, was considerably improved with the ligation-modified kit. Microarray signal dynamic range was found to be linear across three orders of magnitude from 4.88 to 5000 attomoles. Thus, optimization of the microRNA labeling reagent can result in at least a 10-fold decrease in microarray total RNA requirements with little compromise to data quality. Clinical investigations bottlenecked by the amount of starting material may use a ligation mix modification strategy to reduce total RNA requirements.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Coloración y Etiquetado/métodos , Animales , Biotina/química , Encéfalo/metabolismo , Perfilación de la Expresión Génica/normas , Humanos , Pulmón/metabolismo , MicroARNs/química , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Juego de Reactivos para Diagnóstico , Estándares de Referencia , Reproducibilidad de los Resultados , Volumetría
15.
Genomics ; 94(5): 341-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19660539

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) tissue samples are a potentially valuable resource of expression information for medical research, but are under-utilized due to degradation and modification of the RNA. Using a random primer-based RNA amplification strategy, we have evaluated multiple protocols for the extraction and isolation of RNA from FFPE samples. We found that the RecoverAll RNA isolation procedure with three or four slices (ten-microns in thickness), supplemented with additional DNAse, gave optimal results. RNA integrity as assessed by Agilent Bioanalyzer, and amplification of the 28S ribosomal RNA, were predictive for the number of genes detected on Affymetrix arrays. We obtained expression data for colon and lung tumor and normal FFPE samples and matched frozen samples and found a high correlation between frozen and matched FFPE samples (R(2) between 0.82 and 0.89), while the signature sets in tumor versus normal comparisons were also quite similar. QPCR confirmed all 16 of the differential expression results from the microarrays that we tested. Differentially expressed signature genes from tumor versus matched normal FFPE tissue from colon and lung were identified as cancer-related, with 95 colon tumor and 67 lung tumor genes identified, respectively.


Asunto(s)
Formaldehído , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Adhesión en Parafina/métodos , ARN/aislamiento & purificación , Fijación del Tejido/métodos , Neoplasias del Colon/metabolismo , Congelación , Humanos , Neoplasias Pulmonares/metabolismo , ARN/análisis , ARN Neoplásico/análisis , ARN Neoplásico/aislamiento & purificación , ARN Ribosómico 28S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Proc Natl Acad Sci U S A ; 106(7): 2319-24, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19168627

RESUMEN

We have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.05) with the majority being down-regulated in smokers. We further identified a number of mRNAs whose expression level is highly inversely correlated with miRNA expression in vivo. Many of these mRNAs contain potential binding sites for the differentially expressed miRNAs in their 3'-untranslated region (UTR) and are themselves affected by smoking. We found that either increasing or decreasing the levels of mir-218 (a miRNA that is strongly affected by smoking) in both primary bronchial epithelial cells and H1299 cells was sufficient to cause a corresponding decrease or increase in the expression of predicted mir-218 mRNA targets, respectively. Further, mir-218 expression is reduced in primary bronchial epithelium exposed to cigarette smoke condensate (CSC), and alteration of mir-218 levels in these cells diminishes the induction of the predicted mir-218 target MAFG in response to CSC. These data indicate that mir-218 levels modulate the airway epithelial gene expression response to cigarette smoke and support a role for miRNAs in regulating host response to environmental toxins.


Asunto(s)
Epitelio/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Fumar , Tráquea/metabolismo , Regiones no Traducidas 3' , Adulto , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Riesgo
17.
Mol Cancer ; 5: 24, 2006 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-16784538

RESUMEN

BACKGROUND: Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. RESULTS: Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R2 = 0.81); and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03); as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index). CONCLUSION: In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/diagnóstico , Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Neoplasias de la Próstata/diagnóstico , Biopsia , Análisis por Conglomerados , Femenino , Genes erbB-2 , Humanos , Masculino , Fenotipo , Receptores de Estrógenos/análisis , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Células Tumorales Cultivadas
18.
RNA Biol ; 2(3): 93-100, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17114923

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators participating in biological processes ranging from differentiation to carcinogenesis. We developed a rational probe design algorithm and a sensitive labelling scheme for optimizing miRNA microarrays. Our microarray contains probes for all validated miRNAs from five species, with the potential for drawing on species conservation to identify novel miRNAs with homologous probes. These methods are useful for high-throughput analysis of micro RNAs from various sources, and allow analysis with limiting quantities of RNA. The system design can also be extended for use on Luminex beads or on 96-well plates in an ELISA-style assay. We optimized hybridization temperatures using sequence variations on 20 of the probes and determined that all probes distinguish wild-type from 2 nt mutations, and most probes distinguish a 1 nt mutation, producing good selectivity between closely-related small RNA sequences. Results of tissue comparisons on our microarrays reveal patterns of hybridization that agree with results from Northern blots and other methods.


Asunto(s)
MicroARNs/análisis , MicroARNs/genética , Sondas Moleculares , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Células Cultivadas , Ratas , Ratas Long-Evans
19.
BMC Genomics ; 5: 76, 2004 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-15469607

RESUMEN

BACKGROUND: RNA amplification is required for incorporating laser-capture microdissection techniques into microarray assays. However, standard oligonucleotide microarrays contain sense-strand probes, so traditional T7 amplification schemes producing anti-sense RNA are not appropriate for hybridization when combined with conventional reverse transcription labeling methods. We wished to assess the accuracy of a new sense-strand RNA amplification method by comparing ratios between two samples using quantitative real-time PCR (qPCR), mimicking a two-color microarray assay. RESULTS: We performed our validation using qPCR. Three samples of rat brain RNA and three samples of rat liver RNA were amplified using several kits (Ambion messageAmp, NuGen Ovation, and several versions of Genisphere SenseAmp). Results were assessed by comparing the liver/brain ratio for 192 mRNAs before and after amplification. In general, all kits produced strong correlations with unamplified RNAs. The SenseAmp kit produced the highest correlation, and was also able to amplify a partially degraded sample accurately. CONCLUSION: We have validated an optimized sense-strand RNA amplification method for use in comparative studies such as two-color microarrays.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , ARN Mensajero/genética , Animales , Química Encefálica , Biblioteca de Genes , Hígado/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...