RESUMEN
In January 2017, hundreds of fires in Mediterranean Chile burnt more than 5000 km2, an area nearly 14 times the 40-year mean. We contextualize these fires in terms of estimates of global fire intensity using MODIS satellite record, and provide an overview of the climatic factors and recent changes in land use that led to the active fire season and estimate the impact of fire emissions to human health. The primary fire activity in late January coincided with extreme fire weather conditions including all-time (1979-2017) daily records for the Fire Weather Index (FWI) and maximum temperature, producing some of the most energetically intense fire events on Earth in the last 15-years. Fire activity was further enabled by a warm moist growing season in 2016 that interrupted an intense drought that started in 2010. The land cover in this region had been extensively modified, with less than 20% of the original native vegetation remaining, and extensive plantations of highly flammable exotic Pinus and Eucalyptus species established since the 1970s. These plantations were disproportionally burnt (44% of the burned area) in 2017, and associated with the highest fire severities, as part of an increasing trend of fire extent in plantations over the past three decades. Smoke from the fires exposed over 9.5 million people to increased concentrations of particulate air pollution, causing an estimated 76 premature deaths and 209 additional admissions to hospital for respiratory and cardiovascular conditions. This study highlights that Mediterranean biogeographic regions with expansive Pinus and Eucalyptus plantations and associated rural depopulation are vulnerable to intense wildfires with wide ranging social, economic, and environmental impacts, which are likely to become more frequent due to longer and more extreme wildfire seasons.
Asunto(s)
Incendios , Pinus , Chile , Sequías , Humanos , Tiempo (Meteorología)RESUMEN
Ecologists have long sought to understand the factors controlling the structure of savanna vegetation. Using data from 2154 sites in savannas across Africa, Australia, and South America, we found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal area. However, among continents, the magnitude of these effects varied substantially, so that a single model cannot adequately represent savanna woody biomass across these regions. Historical and environmental differences drive the regional variation in the functional relationships between woody vegetation, fire, and climate. These same differences will determine the regional responses of vegetation to future climates, with implications for global carbon stocks.