Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 193
1.
Macromol Rapid Commun ; : e2400268, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739444

Solvent-free photopolymerization of vinyl monomers to produce high modulus materials with applications in 3D printing and photoswitchable materials is demonstrated. Polymerizable eutectic (PE) mixtures are prepared by simply heating and stirring various molar ratios of N-isopropylacrylamide (NIPAM), acrylamide (AAm) and 2-hydroxyethyl methacrylate (HEMA). The structural and thermal properties of the resulting mixtures are evaluated by 1D and 2D NMR spectroscopy as well as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). UV photocuring kinetics of the PE mixtures are evaluated via in situ photo-DSC and photorheology measurements. The PE mixtures cure rapidly and display storage moduli that are orders of magnitude greater than equivalent copolymers cured in an aqueous medium. The versatility of these PE systems is demonstrated through the addition of a photoswitchable spiropyran acrylate monomer, as well as applying the PE formulation as a stereolithography (SLA)-based 3D printing resin. Due to the hydrogen-bonding network in PE systems, 3D printing of the eutectic resin is possible in the absence of crosslinkers. The addition of a RAFT agent to reduce average polymer chain length enables 3D printing of materials which retain their shape and can be dissolved on demand in appropriate solvents. This article is protected by copyright. All rights reserved.

2.
Small ; : e2401846, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686690

Triboelectric nanogenerators (TENGs) are sustainable energy resources for powering electronic devices from miniature to large-scale applications. However, their output performance and stability can deteriorate significantly when TENGs are exposed to moisture or humidity caused by the ambient environment or human physiological activities. This review provides an overview of the recent research advancements in enhancing the humidity resistance of TENGs. Various approaches have been reviewed including encapsulation techniques, surface modification of triboelectric materials to augment hydrophobicity or superhydrophobicity, the creation of fibrous architectures for effective moisture dissipation, leveraging water assistance for TENG performance enhancement, and other strategies like charge excitation. These research efforts contribute to the improvement of environmental adaptability and lead to expanded practical TENG applications both as energy harvesters and self-powered sensors. The efficacy of these strategies and future challenges are also discussed to facilitate the continued development of resilient TENGs in high humidity environments.

3.
Nat Commun ; 15(1): 2510, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509090

Only a small proportion of global plastic waste is recycled, of which most is mechanically recycled into lower quality materials. The alternative, chemical recycling, enables renewed production of pristine materials, but generally comes at a high energy cost, particularly for processes like pyrolysis. This review focuses on light-driven approaches for chemically recycling and upcycling plastic waste, with emphasis on reduced energy consumption and selective transformations not achievable with heat-driven methods. We focus on challenging to recycle backbone structures composed of mainly C‒C bonds, which lack functional groups i.e., esters or amides, that facilitate chemical recycling e.g., by solvolysis. We discuss the use of light, either in conjunction with heat to drive depolymerization to monomers or via photocatalysis to transform polymers into valuable small molecules. The structural prerequisites for these approaches are outlined, highlighting their advantages as well as limitations. We conclude with an outlook, addressing key challenges, opportunities, and provide guidelines for future photocatalyst (PC) development.

5.
Biomacromolecules ; 25(2): 871-889, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38165721

Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.


Ammonium Compounds , Antifungal Agents , Animals , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Polymers/pharmacology , Histidine , Guanidine/pharmacology , Lysine , Candida albicans , Imidazoles/pharmacology , Arginine/pharmacology , Microbial Sensitivity Tests , Mammals
6.
Adv Sci (Weinh) ; 11(7): e2305829, 2024 Feb.
Article En | MEDLINE | ID: mdl-38039442

This work introduces a novel method to construct Schottky junctions to boost the output performance of triboelectric nanogenerators (TENGs). Perovskite barium zirconium titanate (BZT) core/metal silver shell nanoparticles are synthesized to be embedded into electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers before they are used as tribo-negative layers. The output power of TENGs with composite fiber mat exhibited >600% increase compared to that with neat polymer fiber mat. The best TENG achieved 1339 V in open-circuit voltage, 40 µA in short-circuit current and 47.9 W m-2 in power density. The Schottky junctions increased charge carrier density in tribo-layers, ensuring a high charge transfer rate while keeping the content of conductive fillers low, thus avoiding charge loss and improving performance. These TENGs are utilized to power radio frequency identification (RFID) tags for backscatter communication (BackCom) systems, enabling ultra-massive connectivity in the 6G wireless networks and reducing information communications technology systems' carbon footprint. Specifically, TENGs are used to provide an additional energy source to the passive tags. Results show that TENGs can boost power for BackCom and increase the communication range by 386%. This timely contribution offers a novel route for sustainable 6G applications by exploiting the expanded communication range of BackCom tags.

8.
Nat Commun ; 14(1): 7815, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38016940

4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.

9.
Macromol Biosci ; : e2300452, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38009827

The global increase in invasive fungal infections and the emergence of drug-resistant strains demand the urgent development of novel antifungal drugs. In this context, synthetic polymers with diverse compositions, mimicking natural antimicrobial peptides, have shown promising potential for combating fungal infections. This study investigates how altering polymer end-groups and topology from linear to branched star-like structures affects their efficacy against Candida spp., including clinical isolates. Additionally, the polymers' biocompatibility is accessed with murine embryonic fibroblasts and red blood cells in vitro. Notably, a low-molecular weight star polymer outperforms both its linear polymeric counterparts and amphotericin B (AmpB) in terms of an improved therapeutic index and reduced haemolytic activity, despite a higher minimum inhibitory concentration against Candida albicans (C. albicans) SC5314 (16-32 µg mL-1 vs 1 µg mL-1 for AmpB). These findings demonstrate the potential of synthetic polymers with diverse topologies as promising candidates for antifungal applications.

10.
Small ; : e2305268, 2023 Sep 03.
Article En | MEDLINE | ID: mdl-37661582

Polymerization-induced microphase separation (PIMS) is a versatile technique for producing nanostructured materials. In previous PIMS studies, the predominant approach involved employing homopolymers as macromolecular chain transfer agents (macroCTAs) to mediate the formation of nanostructured materials. In this article, the use of AB diblock copolymers as macroCTAs to design PIMS systems for 3D printing of nanostructured materials is investigated. Specifically, the influence of diblock copolymer composition and block sequence on the resulting nanostructures, and their subsequent impact on bulk properties is systematically investigated. Through careful manipulation of the A/B block ratios, the morphology and size of the nanodomains are successfully controlled. Remarkably, the sequence of A and B blocks significantly affects the microphase separation process, resulting in distinct morphologies. The effect can be attributed to changes in the interaction parameters (χAB , χBC , χAC ) between the different block segments. Furthermore, the block sequence and composition exert profound influence on the thermomechanical, tensile, and swelling properties of 3D printed nanostructured materials. By leveraging this knowledge, it becomes possible to design advanced 3D printable materials with tailored properties, opening new avenues for material engineering.

11.
Adv Sci (Weinh) ; 10(32): e2304734, 2023 Nov.
Article En | MEDLINE | ID: mdl-37750431

To date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer. By precisely controlling the molecular weight of the sacrificial polymer, the domain size of the resulting material phases can be finely tuned. Pyrolysis of the printed objects yields ceramics with complex macroscale geometries and nanoscale porosity, which display excellent thermal and oxidation resistance, and morphology-dependent thermal conduction properties. This method offers a valuable technological platform for the simplified fabrication of nanostructured ceramics with complex shapes.

12.
Adv Sci (Weinh) ; 10(33): e2304942, 2023 Nov.
Article En | MEDLINE | ID: mdl-37750445

Photoinduced reversible deactivation radical polymerization (photo-RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400-700 nm) are extensively employed in photo-RDRP, the utilization of near-infrared (NIR) wavelengths (λ = 700-2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo-RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light-induced RDRP (NIR-RDRP) systems into four mechanism-based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two-photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR-RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR-RDRP and offers guidance for developing high-performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.

13.
Angew Chem Int Ed Engl ; 62(45): e202309582, 2023 11 06.
Article En | MEDLINE | ID: mdl-37591792

Protein-polymer conjugates have significant potential in pharmaceutical and biomedical applications. To enable their widespread use, robust conjugation techniques are crucial. This study introduces a photo-initiated reversible addition-fragmentation chain-transfer (Photo-RAFT) polymerization system that exhibits excellent oxygen tolerance. This system allows for the synthesis of protein-polymer conjugates with high bioactivity under mild and aerobic conditions. Three photocatalytic systems utilizing Eosin Y (EY) as the photocatalyst with two different cocatalysts (ascorbic acid and triethanolamine) were investigated, each generating distinct reactive oxygen species (ROS) such as singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. The impact of these ROS on three model proteins (lysozyme, albumin, and myoglobin) was evaluated, demonstrating varying bioactivities based on the ROS produced. The EY/TEOA system was identified as the optimal photo-RAFT initiating system, enabling the preparation of protein-polymer conjugates under aerobic conditions while maintaining high protein enzymatic activity. To showcase the potential of this approach, lysozyme-poly(dimethylaminoethyl acrylate) conjugates were successfully prepared and exhibited enhanced antimicrobial property against Gram-positive and Gram-negative bacteria.


Muramidase , Polymers , Oxygen , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria , Proteins/metabolism , Polymerization
14.
Materials (Basel) ; 16(14)2023 Jul 17.
Article En | MEDLINE | ID: mdl-37512322

Orthopedic-device-related infections are notorious for causing physical and psychological trauma to patients suffering from them. Traditional methods of treating these infections have relied heavily on antibiotics and are becoming ineffectual due to the rise of antibiotic-resistant bacteria. Mimics of antimicrobial peptides have emerged as exciting alternatives due to their favorable antibacterial properties and lack of propensity for generating resistant bacteria. In this study, the efficacy of an antibacterial polymer as a coating material for hydroxyapatite and glass surfaces, two materials with wide ranging application in orthopedics and the biomedical sciences, is demonstrated. Both physical and covalent modes of attachment of the polymer to these materials were explored. Polymer attachment to the material surfaces was confirmed via X-ray photoelectron spectroscopy and contact angle measurements. The modified surfaces exhibited significant antibacterial activity against the Gram-negative bacterium E. coli, and the activity was retained for a prolonged period on the surfaces of the covalently modified materials.

15.
Angew Chem Int Ed Engl ; 62(44): e202307329, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37429822

Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.

16.
Macromol Rapid Commun ; 44(24): e2300236, 2023 Dec.
Article En | MEDLINE | ID: mdl-37289980

In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e., Z-group, of macromolecular chain transfer agent (macroCTA) remains unclear as previous research has exclusively employed trithiocarbonate as the CTA end group. Herein, the effect of macroCTAs containing four different Z-groups on the formation of nanostructure of 3D printed materials is explored. The results show that the different Z-groups lead to distinct network formation and phase separation behaviors between the resins, influencing both the 3D printing process and the resulting material properties. Specifically, less reactive macroCTAs toward acrylic radical addition, such as O-alkyl xanthate and N-alkyl-N-aryl dithiocarbamate, result in translucent and brittle materials with macrophase separation morphology. In contrast, more reactive macroCTAs such as S-alkyl trithiocarbonate and 4-chloro-3,5-dimethylpyrazo dithiocarbamate produce transparent and rigid materials with nano-scale morphology. Findings of this study provide a novel approach to manipulate the nanostructure and properties of 3D printed PIMS materials, which can have important implications for materials science and engineering.


Phase Separation , Polymers , Polymers/chemistry , Thiones , Printing, Three-Dimensional
17.
Chem Soc Rev ; 52(9): 3035-3097, 2023 May 09.
Article En | MEDLINE | ID: mdl-37040256

In this review, we provide a brief history, progress, and applications, and discuss the remaining challenges of photocontrolled reversible addition-fragmentation chain transfer (RAFT) polymerization (i.e., photoinduced electron/energy transfer-RAFT (PET-RAFT), photoiniferter, and photomediated cationic RAFT polymerization). Among these, visible-light-driven RAFT polymerization has attracted particular attention in recent years due to its benefits, including low energy consumption and the safe reaction procedure. Moreover, the incorporation of visible-light photocatalysis in the polymerization has conferred attractive features, such as spatiotemporal control and oxygen tolerance; however, a clear understanding of the reaction mechanism has not been completely provided. We also present recent research efforts to elucidate the polymerization mechanisms with the aid of quantum chemical calculations combined with experimental evidence. This review offers an insight into the better design of polymerization systems for desired applications and helps realize the full potential of photocontrolled RAFT polymerization in both academic- and industrial-scale applications.

18.
Angew Chem Int Ed Engl ; 62(23): e202303001, 2023 06 05.
Article En | MEDLINE | ID: mdl-37019840

Selecting a suitable support material for enzyme immobilization with excellent biocatalytic activity and stability is a critical aspect in the development of functional biosystems. The highly stable and metal-free properties of covalent-organic frameworks (COFs) make them ideal supports for enzyme immobilization. Herein, we constructed three kinds of COFs via a biofriendly and one-pot synthetic strategy at room temperature in aqueous solution. Among the three developed COFs (COF-LZU1, RT-COF-1 and ACOF-1), the horseradish peroxidase (HRP)-incorporated COF-LZU1 is found to retain the highest activity. Structural analysis reveals that a weakest interaction between the hydrated enzyme and COF-LZU1, an easiest accessibility by the COF-LZU1 to the substrate, as well as an optimal conformation of enzyme together promote the bioactivity of HRP-COF-LZU1. Furthermore, the COF-LZU1 is revealed to be a versatile nanoplatform for encapsulating multiple enzymes. The COF-LZU1 also offers superior protection for the immobilized enzymes under harsh conditions and during recycling. The comprehensive understanding of interfacial interactions of COF host and enzyme guest, the substrate diffusion, as well as the enzyme conformation alteration within COF matrices represents an opportunity to design the ideal biocatalysts and opens a broad range of applications of these nanosystems.


Enzymes, Immobilized , Metal-Organic Frameworks , Biocatalysis , Diffusion , Horseradish Peroxidase
19.
Angew Chem Int Ed Engl ; 62(25): e202302451, 2023 Jun 19.
Article En | MEDLINE | ID: mdl-36988047

We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system catalyzed by tetrasulfonated zinc phthalocyanine (ZnPcS4 - ) in the presence of peroxides. Taking advantage of its fast polymerization rates and high oxygen tolerance, this system is successfully applied for the preparation of hydrogels. Exploiting the enhanced penetration of NIR light, photoinduced gelation is effectively performed through non-transparent biological barriers. Notably, the RAFT agents embedded in these hydrogel networks can be reactivated on-demand, enabling the hydrogel healing under NIR light irradiation. In contrast to the minimal healing capability (<15 %) of hydrogels prepared by free radical polymerization (FRP), RAFT-mediated networks display more than 80 % recovery of tensile strength. Although healable polymer networks under UV and blue lights have already been established, this work is the first photochemistry system using NIR light, facilitating photoinduced healing of hydrogels through thick non-transparent barriers.


Hydrogels , Polymers , Hydrogels/pharmacology , Polymerization , Water , Infrared Rays
20.
Small ; 19(50): e2206639, 2023 Dec.
Article En | MEDLINE | ID: mdl-36737816

Solid polymer electrolytes (SPEs) offer several advantages compared to their liquid counterparts, and much research has focused on developing SPEs with enhanced mechanical properties while maintaining high ionic conductivities. The recently developed polymerization-induced microphase separation (PIMS) technique offers a straightforward pathway to fabricate bicontinuous nanostructured materials in which the mechanical properties and conductivity can be independently tuned. In this work SPEs with tunable mechanical properties and conductivities are prepared via digital light processing 3D printing, exploiting the PIMS process to achieve nanostructured ion-conducting materials for energy storage applications. A rigid crosslinked poly(isobornyl acrylate-stat-trimethylpropane triacrylate) scaffold provided materials with room temperature shear modulus above 400 MPa, while soft poly(oligoethylene glycol methyl ether acrylate) domains containing the ionic liquid 1-butyl-3-methylimidazolium bis-(trifluoromethyl sulfonyl)imide endowed the material with ionic conductivity up to 1.2 mS cm-1 at 30 °C. These features make the 3D-printed SPE very competitive for applications in all solid energy storage devices, including supercapacitors.

...