Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 134-135: 108928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776715

RESUMEN

The radiotherapeutic 195mPt is among the most effective Auger electron emitters of the currently studied radionuclides that have a potential theranostic application in nuclear medicine. Production of 195mPt through double neuron capture of enriched 193Ir followed by ß--decay to the radioisotope of interest carried out at the research reactor IBR-2 is described. Because of the high radiation background, radiochemical purification procedure of 195mPt from bulk of iridium was needed to be developed and is detailed here as well. For the first time, cross section and resonance integral for the reaction 194Ir(n,γ)195mIr were determined. Resonance neutrons contribution was established to exceed that of thermal neutrons, and resonance integral for the reaction 194Ir(n,γ)195mIr is calculated to be 2900 b. Specific activity of 195mPt was estimated to reach a value of 38.7 GBq/(g Pt) at IBR-2 by the end of bombardment (EOB).


Asunto(s)
Neutrones , Reactores Nucleares , Radioquímica , Radioisótopos/química
2.
Inorg Chem ; 59(17): 12209-12217, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32833448

RESUMEN

One of the key components of radiopharmaceuticals for targeting imaging and therapy is a stable bifunctional chelating system to attach radionuclides to selective delivery systems. After-effects of radioactive decay can cause the release of a radioactive isotope from its chelation agent. Perturbed angular correlation (PAC) of γ-rays has become a unique technique to study the behavior of complexes formed between a chelating agent and radionuclide in vivo (in real time) over a relevant range of concentrations (10-12 M). In the present work, four radionuclides, 111In, 111mCd, and 152, 154Eu, were investigated with diethylenetriaminepentaacetic acid (DTPA) at different pH values to determine the stability constants of the complexes as well as the effects of post-decay processes, which play a major role in determining the suitability of these complexes for application as radiopharmaceuticals (e.g., in vivo generators). The study provides a convenient parameter for the characterization of radionuclide-chelator systems using the PAC method. PAC is proven to be a suitable tool to study novel chelators and radiopharmaceutical precursors attached to radiometals.


Asunto(s)
Radioquímica/métodos , Radiofármacos/química , Rayos gamma , Concentración de Iones de Hidrógeno , Ácido Pentético/química , Radioisótopos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...