Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677281

RESUMEN

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autofagia , Proteínas Activadoras de GTPasa , Inmunidad de la Planta , Autofagia/fisiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transporte de Proteínas
2.
Mol Plant Microbe Interact ; 37(3): 220-226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37999635

RESUMEN

Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Interacciones Huésped-Patógeno , Oomicetos , Oomicetos/metabolismo , Plantas/microbiología , Proteínas/metabolismo , Hongos , Enfermedades de las Plantas/microbiología
3.
Phys Biol ; 20(5)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37442125

RESUMEN

Soil-dwelling microorganisms use a variety of chemical and physical signals to navigate their environment. Plant roots produce endogenous electric fields which result in characteristic current profiles. Such electrical signatures are hypothesised to be used by pathogens and symbionts to track and colonise plant roots. The oomycete pathogenPhytophthora palmivoragenerates motile zoospores which swim towards the positive pole when exposed to an external electric fieldin vitro. Here, we provide a quantitative characterization of their electrotactic behaviour in 3D. We found that a weak electric field (0.7-1.0 V cm-1) is sufficient to induce an accumulation of zoospore at the positive pole, without affecting their encystment rate. We also show that the same external electric field increases the zoospore germination rate and orients the germ tube's growth. We conclude that several early stages of theP. palmivorainfection cycle are affected by external electric fields. Taken together, our results are compatible with the hypothesis that pathogens use plant endogenous electric fields for host targeting.


Asunto(s)
Phytophthora , Germinación , Raíces de Plantas
4.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134163

RESUMEN

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioingeniería
5.
Annu Rev Phytopathol ; 61: 325-350, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186899

RESUMEN

Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.


Asunto(s)
Vesícula , Fusión de Membrana , Membranas , Membrana Celular , Transporte Biológico
6.
Curr Opin Plant Biol ; 74: 102372, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172365

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that restrict plant invasion by pathogens. Most NLRs operate in intricate networks to detect pathogen effectors in a robust and efficient manner. NLRs are not static sensors; rather, they exhibit remarkable mobility and structural plasticity during the innate immune response. Inactive NLRs localize to diverse subcellular compartments where they are poised to sense pathogen effectors. During pathogen attack, some NLRs relocate toward the plant-pathogen interface, possibly to ensure their timely activation. Activated NLRs reorganize into wheel-shaped oligomers, some of which then form plasma membrane pores that promote calcium influx and programmed cell death. The emerging paradigm is that this variable and dynamic nature underpins effective NLR-mediated immunity.


Asunto(s)
Resistencia a la Enfermedad , Plantas , Plantas/metabolismo , Proteínas NLR/genética , Inmunidad de la Planta , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
PLoS Biol ; 21(2): e3001962, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36753519

RESUMEN

Macroautophagy/autophagy is an intracellular degradation process central to cellular homeostasis and defense against pathogens in eukaryotic cells. Regulation of autophagy relies on hierarchical binding of autophagy cargo receptors and adaptors to ATG8/LC3 protein family members. Interactions with ATG8/LC3 are typically facilitated by a conserved, short linear sequence, referred to as the ATG8/LC3 interacting motif/region (AIM/LIR), present in autophagy adaptors and receptors as well as pathogen virulence factors targeting host autophagy machinery. Since the canonical AIM/LIR sequence can be found in many proteins, identifying functional AIM/LIR motifs has proven challenging. Here, we show that protein modelling using Alphafold-Multimer (AF2-multimer) identifies both canonical and atypical AIM/LIR motifs with a high level of accuracy. AF2-multimer can be modified to detect additional functional AIM/LIR motifs by using protein sequences with mutations in primary AIM/LIR residues. By combining protein modelling data from AF2-multimer with phylogenetic analysis of protein sequences and protein-protein interaction assays, we demonstrate that AF2-multimer predicts the physiologically relevant AIM motif in the ATG8-interacting protein 2 (ATI-2) as well as the previously uncharacterized noncanonical AIM motif in ATG3 from potato (Solanum tuberosum). AF2-multimer also identified the AIM/LIR motifs in pathogen-encoded virulence factors that target ATG8 members in their plant and human hosts, revealing that cross-kingdom ATG8-LIR/AIM associations can also be predicted by AF2-multimer. We conclude that the AF2-guided discovery of autophagy adaptors/receptors will substantially accelerate our understanding of the molecular basis of autophagy in all biological kingdoms.


Asunto(s)
Furilfuramida , Proteínas Asociadas a Microtúbulos , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Filogenia , Secuencias de Aminoácidos , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Autofagia/fisiología , Proteínas Portadoras/metabolismo , Unión Proteica
8.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656829

RESUMEN

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Inmunidad de la Planta/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
9.
EMBO J ; 42(5): e111519, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579501

RESUMEN

Nucleotide-binding domain leucine-rich repeat (NLR) immune receptors are important components of plant and metazoan innate immunity that can function as individual units or as pairs or networks. Upon activation, NLRs form multiprotein complexes termed resistosomes or inflammasomes. Although metazoan paired NLRs, such as NAIP/NLRC4, form hetero-complexes upon activation, the molecular mechanisms underpinning activation of plant paired NLRs, especially whether they associate in resistosome hetero-complexes, is unknown. In asterid plant species, the NLR required for cell death (NRC) immune receptor network is composed of multiple resistance protein sensors and downstream helpers that confer immunity against diverse plant pathogens. Here, we show that pathogen effector-activation of the NLR proteins Rx (confers virus resistance), and Bs2 (confers bacterial resistance) leads to oligomerization of their helper NLR, NRC2. Activated Rx does not oligomerize or enter into a stable complex with the NRC2 oligomer and remains cytoplasmic. In contrast, activated NRC2 oligomers accumulate in membrane-associated puncta. We propose an activation-and-release model for NLRs in the NRC immune receptor network. This points to a distinct activation model compared with mammalian paired NLRs.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Animales , Proteínas NLR/química , Proteínas NLR/metabolismo , Plantas/metabolismo , Inmunidad Innata , Inflamasomas , Proteínas de Plantas/genética , Enfermedades de las Plantas , Mamíferos
10.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36302035

RESUMEN

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Asunto(s)
Mirabilis , Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas , Phytophthora infestans/genética , Especificidad del Huésped
11.
EMBO J ; 41(13): e110352, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35620914

RESUMEN

Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.


Asunto(s)
Enfermedades de las Plantas , Factores de Virulencia , Animales , Autofagia , Bacterias/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
12.
Elife ; 102021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34424198

RESUMEN

Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.


With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this 'self-eating' mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like 'vesicles' filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.


Asunto(s)
Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Proteínas de Plantas/genética , Solanum tuberosum/genética , Autofagia , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología
13.
Plant J ; 107(6): 1771-1787, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250673

RESUMEN

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Asunto(s)
Cloroplastos/microbiología , Interacciones Huésped-Patógeno/fisiología , Nicotiana/microbiología , Phytophthora infestans/patogenicidad , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/inmunología , Dinitrobencenos/farmacología , Luz , Microscopía Confocal , Pinzas Ópticas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Sulfanilamidas/farmacología , Tiazolidinas/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/inmunología
14.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33677602

RESUMEN

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Phytophthora infestans/fisiología , Proteínas/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Proteínas SNARE/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología
15.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284406

RESUMEN

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Asunto(s)
Cloroplastos/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas NLR/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Animales , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Silenciador del Gen , Microscopía Confocal , Proteínas NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/genética , Plantones , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
16.
J Cell Sci ; 133(5)2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132107

RESUMEN

Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area.


Asunto(s)
Arabidopsis , Animales , Interacciones Huésped-Patógeno/genética , Células Vegetales , Enfermedades de las Plantas
17.
Elife ; 82019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31774397

RESUMEN

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Asunto(s)
Proteínas NLR/química , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores Inmunológicos/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis , Proteínas Portadoras , Muerte Celular , Técnicas de Inactivación de Genes , Modelos Moleculares , Proteínas NLR/clasificación , Proteínas NLR/genética , Filogenia , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de Proteína , Nicotiana/genética , Nicotiana/inmunología
18.
Curr Opin Plant Biol ; 52: 46-53, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31442734

RESUMEN

Autophagy is a conserved eukaryotic process that mediates degradation and relocation of cellular material to maintain homeostasis and cope with cellular stress. Remarkably, this ancient catabolic machinery has been co-opted to eliminate invading pathogens in a variety of ways. Plant autophagy not only mediates selective destruction of viruses but also limits infection by extracellular bacterial and filamentous pathogens. The emerging paradigm is that autophagy adaptors, responsible for selective cargo sorting, have been appointed to counteract pathogen infection, while adapted pathogens have evolved to subvert the immune functions of the autophagic machinery. In this review, we discuss recent findings that contribute to understanding the role of autophagy in plant immunity and highlight key questions to address in the field moving forward.


Asunto(s)
Autofagia , Virus , Homeostasis , Inmunidad Innata , Inmunidad de la Planta , Plantas
19.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932422

RESUMEN

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Asunto(s)
Autofagia/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/inmunología , Autofagosomas/inmunología , Autofagosomas/parasitología , Autofagia/inmunología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/patogenicidad , Células Vegetales/inmunología , Células Vegetales/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Unión Proteica , Transducción de Señal , Solanum tuberosum/inmunología , Solanum tuberosum/parasitología
20.
J Exp Bot ; 69(6): 1325-1333, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29294077

RESUMEN

In plants, the highly conserved catabolic process of autophagy has long been known as a means of maintaining cellular homeostasis and coping with abiotic stress conditions. Accumulating evidence has linked autophagy to immunity against invading pathogens, regulating plant cell death, and antimicrobial defences. In turn, it appears that phytopathogens have evolved ways not only to evade autophagic clearance but also to modulate and co-opt autophagy for their own benefit. In this review, we summarize and discuss the emerging discoveries concerning how pathogens modulate both host and self-autophagy machineries to colonize their host plants, delving into the arms race that determines the fate of interorganismal interaction.


Asunto(s)
Autofagia/fisiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad de la Planta , Plantas/inmunología , Autofagia/inmunología , Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...