Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Hydrol Reg Stud ; 50: 101534, 2023 Dec.
Article En | MEDLINE | ID: mdl-38145056

Study region: The Morava River basin, Czech Republic, Danube Basin, Central Europe. Study focus: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July-September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. New hydrological insights for the region: The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends.

2.
Sci Data ; 9(1): 166, 2022 04 12.
Article En | MEDLINE | ID: mdl-35414083

This data paper describes the multinational Database of Flood Fatalities from the Euro-Mediterranean region FFEM-DB that hosts data of 2,875 flood fatalities from 12 territories (nine of which represent entire countries) in Europe and the broader Mediterranean region from 1980 to 2020. The FFEM-DB database provides data on fatalities' profiles, location, and contributing circumstances, allowing researchers and flood risk managers to explore demographic, behavioral, and situational factors, as well as environmental features of flood-related mortality. The standardized data collection and classification methodology enable comparison between regions beyond administrative boundaries. The FFEM-DB is expandable, regularly updated, publicly available, and with anonymized data. The key advantages of the FFEM-DB compared to existing datasets containing flood fatalities are its high level of detail, data accuracy, record completeness, and the large sample size from an extended area.

3.
Nature ; 583(7817): 560-566, 2020 07.
Article En | MEDLINE | ID: mdl-32699397

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way1. Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe2. However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective. Here we analyse how recent decades compare with the flood history of Europe, using a new database composed of more than 100 high-resolution (sub-annual) historical flood series based on documentary evidence covering all major regions of Europe. We show that the past three decades were among the most flood-rich periods in Europe in the past 500 years, and that this period differs from other flood-rich periods in terms of its extent, air temperatures and flood seasonality. We identified nine flood-rich periods and associated regions. Among the periods richest in floods are 1560-1580 (western and central Europe), 1760-1800 (most of Europe), 1840-1870 (western and southern Europe) and 1990-2016 (western and central Europe). In most parts of Europe, previous flood-rich periods occurred during cooler-than-usual phases, but the current flood-rich period has been much warmer. Flood seasonality is also more pronounced in the recent period. For example, during previous flood and interflood periods, 41 per cent and 42 per cent of central European floods occurred in summer, respectively, compared with 55 per cent of floods in the recent period. The exceptional nature of the present-day flood-rich period calls for process-based tools for flood-risk assessment that capture the physical mechanisms involved, and management strategies that can incorporate the recent changes in risk.

...