Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 253
1.
Data Brief ; 54: 110510, 2024 Jun.
Article En | MEDLINE | ID: mdl-38799712

Chemical pollution of the aquatic environment is nowadays characterised by increasing levels of anthropogenic organic compounds at low concentrations and is recognised as one of the main drivers of the deteriorated ecological state of European waterbodies. To improve the understanding of the impact of chemical pollution in surface waters, a combined approach of chemical and bioanalytical testing is considered necessary for effective ecologically oriented water management. For this dataset, six 25-L water samples were collected at six sampling sites along the Holtemme River in Central Germany using large-volume solid phase extraction. All samples were analysed by targeted high-resolution liquid chromatography-mass spectrometry (LC-MS) and a selected bioanalytical test battery using effect-based methods. These methods included cytotoxicity assessment, several mechanism-specific CALUXⓇ tests to identify endocrine and oxidative stress-related effects and the fish embryo acute toxicity test to investigate (sub)lethal effects in the model species Danio rerio. This approach provided a dataset that offers a longitudinal characterisation of the chemical pollution and ecotoxicological impacts. The combination of chemical analysis and effect-based analysis is valuable for future studies as it will help researchers, risk assessors and authorities to identify hot spots of chemical pollution, monitor environmental quality standards and recommend mitigation strategies.

2.
Environ Pollut ; 356: 124235, 2024 May 25.
Article En | MEDLINE | ID: mdl-38801881

Native and invasive species often occupy similar ecological niches and environments where they face comparable risks from chemical exposure. Sometimes, invasive species are phylogenetically related to native species, e.g. they may come from the same family and have potentially similar sensitivities to environmental stressors due to phylogenetic conservatism and ecological similarity. However, empirical studies that aim to understand the nuanced impacts of chemicals on the full range of closely related species are rare, yet they would help to comprehend patterns of current biodiversity loss and species turnover. Behavioral sublethal endpoints are of increasing ecotoxicological interest. Therefore, we investigated behavioral responses (i.e., change in movement behavior) of the four dominant amphipod species in the Rhine-Main area (central Germany) when exposed to the neonicotinoid thiacloprid. Moreover, beyond species-specific behavioral responses, ecological interactions (e.g. parasitation with Acanthocephala) play a crucial role in shaping behavior, and we have considered these infections in our analysis. Our findings revealed distinct baseline behaviors and species-specific responses to thiacloprid exposure. Notably, Gammarus fossarum exhibited biphasic behavioral changes with hyperactivity at low concentrations that decreased at higher concentrations. Whereas Gammarus pulex, Gammarus roeselii and the invasive species Dikerogammarus villosus, showed no or weaker behavioral responses. This may partly explain why G. fossarum disappears in chemically polluted regions while the other species persist there to a certain degree. But it also shows that potential pre-exposure in the habitat may influence behavioral responses of the other amphipod species, because habituation occurs, and potential hyperactivity would be harmful to individuals in the habitat. The observed responses were further influenced by acanthocephalan parasites, which altered baseline behavior in G. roeselii and enhanced the behavioral response to thiacloprid exposure. Our results underscore the intricate and diverse nature of responses among closely related amphipod species, highlighting their unique vulnerabilities in anthropogenically impacted freshwater ecosystems.

3.
Environ Int ; 186: 108585, 2024 Apr.
Article En | MEDLINE | ID: mdl-38521044

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Environmental Exposure , Environmental Monitoring , Humans , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Environmental Pollutants/analysis , Hazardous Substances/analysis , Mass Spectrometry/methods , Risk Assessment/methods
4.
Sci Total Environ ; 921: 171054, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38378069

Environmental risk assessments strategies that account for the complexity of exposures are needed in order to evaluate the toxic pressure of emerging chemicals, which also provide suggestions for risk mitigation and management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of chemicals of emerging concern (CECs) are conducted in countries of the Global North, leaving massive knowledge gaps in countries of the Global South. In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66-92 % of the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes known for their high biological activity in specific target organisms.


Environmental Monitoring , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Ecosystem , Rivers/chemistry , Chile , Risk Assessment
5.
Environ Int ; 183: 108371, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103345

There is increasing awareness that chemical pollution of freshwater systems with complex mixtures of chemicals from domestic sources, agriculture and industry may cause a substantial chemical footprint on water organisms, pushing aquatic ecosystems outside the safe operating space. The present study defines chemical footprints as the risk that chemicals or chemical mixtures will have adverse effects on a specific group of organisms. The aim is to characterise these chemical footprints in European streams based on a unique and uniform screening of more than 600 chemicals in 445 surface water samples, and to derive site- and compound-specific information for management prioritisation purposes. In total, 504 pesticides, biocides, pharmaceuticals and other compounds have been detected, including frequently occurring and site-specific compounds with concentrations up to 74 µg/L. Key finding is that three-quarter of the investigated sites in 22 European river basins exceed established thresholds for chemical footprints in freshwater, leading to expected acute or chronic impacts on aquatic organisms. The largest footprints were recorded on invertebrates, followed by algae and fish. More than 70 chemicals exceed thresholds of chronic impacts on invertebrates. For all organism groups, pesticides and biocides were the main drivers of chemical footprints, while mixture impacts were particularly relevant for invertebrates. No clear significant correlation was found between chemical footprints and the urban discharge fractions, suggesting that effluent-specific quality rather than the total load of treated wastewater in the aquatic environment and the contribution of diffuse sources, e.g. from agriculture, determine chemical footprints.


Disinfectants , Pesticides , Water Pollutants, Chemical , Animals , Rivers/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Invertebrates , Pesticides/analysis , Aquatic Organisms , Water , Environmental Monitoring
6.
Data Brief ; 50: 109600, 2023 Oct.
Article En | MEDLINE | ID: mdl-37780467

Chemical pollution caused by synthetic organic chemicals at low concentrations in the environment poses a growing threat to the ecological status of aquatic ecosystems. These chemicals are regularly released into surface waters through both treated and untreated effluents from wastewater treatment plants (WWTPs), agricultural runoff, and industrial discharges. Consequently, they accumulate in surface waters, distribute amongst environmental compartments according to their physicochemical properties, and cause adverse effects on aquatic organisms. Unfortunately, there is a lack of data regarding the occurrence of synthetic organic chemicals, henceforth micropollutants, in South American freshwater ecosystems, especially in Chile. To address this research gap, we present a comprehensive dataset comprising concentrations of 153 emerging chemicals, including pesticides, pharmaceutical and personal care products (PPCPs), surfactants, and industrial chemicals. These chemicals were found to co-occur in surface waters within Central Chile, specifically in the River Aconcagua Basin. Our sampling strategy involved collecting surface water samples from streams and rivers with diverse land uses, such as agriculture, urban areas, and natural reserves. For sample extraction, we employed an on-site large-volume solid phase extraction (LVSPE) device. The resulting environmental extracts were then subjected to wide-scope chemical target screening using gas chromatography and liquid chromatography high-resolution mass spectrometry (GC- and LC-HRMS). The dataset we present holds significant value in assessing the chemical status of water bodies. It enables comparative analysis of pollution fingerprints associated with emerging chemicals across different freshwater systems. Moreover, the data can be reused for environmental risk assessment studies. Its utilisation will contribute to a better understanding of the impact and extent of chemical pollution in aquatic ecosystems, facilitating the development of effective mitigation strategies.

7.
Environ Int ; 179: 108155, 2023 09.
Article En | MEDLINE | ID: mdl-37688808

Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.


Environmental Pollutants , Databases, Factual , Environmental Pollution , Geography , Quantitative Structure-Activity Relationship
8.
Environ Sci Pollut Res Int ; 30(42): 96138-96146, 2023 Sep.
Article En | MEDLINE | ID: mdl-37566323

Acetylcholinesterase (AChE) inhibitors are an important class of neuroactive chemicals that are often detected in aquatic and terrestrial environments. The correct functionality of the AChE enzyme is linked to many important physiological processes such as locomotion and respiration. Consequently, it is necessary to develop new analytical strategies to identify harmful AChE inhibitors in the environment. It has been shown that mixture effects and oxidative stress may jeopardize the application of in vivo assays for the identification of AChE inhibitors in the environment. To confirm that in vivo AChE assays can be successfully applied when dealing with complex mixtures, an extract from river water impacted by non-treated wastewater was bio-tested using the acute toxicity fish embryo test (FET) and AChE inhibition assay with zebrafish. The zebrafish FET showed high sensitivity for the extract (LC10 = relative extraction factor 2.8) and we observed a significant inhibition of the AChE (40%, p < 0.01) after 4-day exposure. Furthermore, the extract was chromatographically fractionated into a total of 26 fractions to dilute the mixture effect and separate compounds according to their physico-chemical properties. As expected, non-specific acute effects (i.e., mortality) disappeared or evenly spread among the fractions, while AChE inhibition was still detected in five fractions. Chemical analysis did not detect any known AChE inhibitors in these active fractions. These results confirm that the AChE assay with Danio rerio can be applied for the detection of neuroactive effects induced in complex environmental samples, but also, they highlight the need to increase analytical and identification techniques for the detection of neurotoxic substances.


Water Pollutants, Chemical , Zebrafish , Animals , Acetylcholinesterase , Rivers/chemistry , Serbia , Water Pollutants, Chemical/analysis , Cholinesterase Inhibitors/toxicity , Embryo, Nonmammalian
9.
Environ Int ; 178: 107957, 2023 08.
Article En | MEDLINE | ID: mdl-37406370

Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.


Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Androgen Antagonists , Ecotoxicology , Estrone , Rivers/chemistry
11.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Article En | MEDLINE | ID: mdl-37100053

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mutagenesis , Mutation , Oxidation-Reduction , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
Environ Sci Technol ; 57(10): 4143-4152, 2023 03 14.
Article En | MEDLINE | ID: mdl-36862848

To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 µg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 µg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.


Snow , Wastewater , Water Pollutants, Chemical , Animals , Crustacea , Environmental Monitoring , Fishes , Freezing , Risk Assessment , Snow/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification , Phenylenediamines/analysis , Phenylenediamines/toxicity , Benzoquinones/analysis , Benzoquinones/toxicity
13.
J Hazard Mater ; 450: 131009, 2023 05 15.
Article En | MEDLINE | ID: mdl-36863100

WBE has now become a complimentary tool in SARS-CoV-2 surveillance. This was preceded by the established application of WBE to assess the consumption of illicit drugs in communities. It is now timely to build on this and take the opportunity to expand WBE to enable comprehensive assessment of community exposure to chemical stressors and their mixtures. The goal of WBE is to quantify community exposure, discover exposure-outcome associations, and trigger policy, technological or societal intervention strategies with the overarching aim of exposure prevention and public health promotion. To achieve WBE's full potential, the following key aspects require further action: (1) Integration of WBE-HBM (human biomonitoring) initiatives that provide comprehensive community-individual multichemical exposure assessment. (2) Global WBE monitoring campaigns to provide much needed data on exposure in low- and middle-income countries (LMICs) and fill in the gaps in knowledge especially in the underrepresented highly urbanised as well as rural settings in LMICs. (3) Combining WBE with One Health actions to enable effective interventions. (4) Advancements in new analytical tools and methodologies for WBE progression to enable biomarker selection for exposure studies, and to provide sensitive and selective multiresidue analysis for trace multi-biomarker quantification in a complex wastewater matrix. Most of all, further developments of WBE needs to be undertaken by co-design with key stakeholder groups: government organisations, health authorities and private sector.


COVID-19 , One Health , Humans , Wastewater-Based Epidemiological Monitoring , Biological Monitoring , SARS-CoV-2 , Biomarkers/analysis
14.
Environ Int ; 170: 107608, 2022 12.
Article En | MEDLINE | ID: mdl-36343551

In the present study on endocrine disrupting chemicals (EDCs) in treated wastewater, we used chemical and effect-based tools to analyse 56 wastewater treatment plant (WWTP) effluents from 15 European countries. The main objectives were (i) to compare three different receptor-based estrogenicity assays (ERα-GeneBLAzer, p-YES, ERα-CALUX®), and (ii) to investigate a combined approach of chemical target analysis and receptor-based testing for estrogenicity, glucocorticogenic activity, androgenicity and progestagenic activity (ERα-, GR-, AR- and PR-GeneBLAzer assays, respectively) in treated wastewater. A total of 56 steroids and phenols were detected at concentrations ranging from 25 pg/L (estriol, E3) up to 2.4 µg/L (cortisone). WWTP effluents, which passed an advanced treatment via ozonation or via activated carbon, were found to be less contaminated, in terms of lower or no detection of steroids and phenols, as well as hormone receptor-mediated effects. This result was confirmed by the effect screening, including the three ERα-bioassays. In the GeneBLAzer assays, ERα-activity was detected in 82 %, and GR-activity in 73 % of the samples, while AR- and PR-activity were only measured in 14 % and 21 % of the samples, respectively. 17ß-estradiol was confirmed as the estrogen dominating the observed estrogenic mixture effect and triamcinolone acetonide was the dominant driver of glucocorticogenic activity. The comparison of bioanalytical equivalent concentrations (BEQ) predicted from the detected concentrations and the relative effect potency (BEQchem) with measured BEQ (BEQbio) demonstrated good correlations of chemical target analysis and receptor-based testing results with deviations mostly within a factor of 10. Bioassay-specific effect-based trigger values (EBTs) from the literature, but also newly calculated EBTs based on previously proposed derivation options, were applied and allowed a preliminary assessment of the water quality of the tested WWTP effluent samples. Overall, this study demonstrates the high potential of linking chemical with effect-based analysis in water quality assessment with regard to EDC contamination.


Endocrine Disruptors , Endocrine Disruptors/toxicity , Wastewater , Europe
15.
Environ Sci Eur ; 34(1): 104, 2022.
Article En | MEDLINE | ID: mdl-36284750

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

16.
Sci Total Environ ; 853: 158622, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36084781

The biological effects of multiple compounds have been widely investigated in aquatic environments. However, investigations of spatial and temporal variations in biological effects are rarely performed because they are time-consuming and labor-intensive. In this study, the variability of the anti-androgen, receptor-mediated activity of surface water samples was observed over 3 years using in vitro bioassays. Large-volume water samples were collected at one site upstream (Wer site) and two sites downstream (Sil and Nien sites) of a wastewater treatment plant (WWTP) outfall in the Holtemme River. Anti-AR activity was persistently present in all surface water samples over the three years. Large spatial variations in anti-androgenic activity were observed, with the lowest activity at the Wer site (mean concentration of 9.5 ± 7.2 µg flutamide equivalents/L) and the highest activity at the Sil site (mean concentration of 31.1 ± 12.0 µg flutamide equivalents/L) directly influenced by WWTP effluents. On the temporal scale, no distinct trend for anti-AR activity was observed among the seasons in all three years. The anti-androgenic activity at the upstream Wer site showed a decreasing trend from 2014 to 2016, indicating improved water quality. A novel bioanalytical-equivalent-based risk assessment method considering the frequency of risk occurrence was developed and then utilized to assess the environmental risk of anti-androgenic activity in the Holtemme River. The results revealed that the highest risk was present at the Sil site, while the risk was considerably reduced at the Nien site. The risk at the upstream Wer site was the lowest.


Water Pollutants, Chemical , Water Purification , Wastewater/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Flutamide , Rivers , Water Purification/methods , Androgen Antagonists , Environmental Monitoring/methods
17.
Environ Int ; 168: 107452, 2022 Oct.
Article En | MEDLINE | ID: mdl-35994799

Within the Human Biomonitoring for Europe initiative (HBM4EU), a study to determine new biomarkers of exposure to pesticides and to assess exposure patterns was conducted. Human urine samples (N = 2,088) were collected from five European regions in two different seasons. The objective of the study was to identify pesticides and their metabolites in collected urine samples with a harmonized suspect screening approach based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) applied in five laboratories. A combined data processing workflow included comprehensive data reduction, correction of mass error and retention time (RT) drifts, isotopic pattern analysis, adduct and elemental composition annotation, finalized by a mining of the elemental compositions for possible annotations of pesticide metabolites. The obtained tentative annotations (n = 498) were used for acquiring representative data-dependent tandem mass spectra (MS2) and verified by spectral comparison to reference spectra generated from commercially available reference standards or produced through human liver S9 in vitro incubation experiments. 14 parent pesticides and 71 metabolites (including 16 glucuronide and 11 sulfate conjugates) were detected. Collectively these related to 46 unique pesticides. For the remaining tentative annotations either (i) no data-dependent MS2 spectra could be acquired, (ii) the spectral purity was too low for sufficient matching, or (iii) RTs indicated a wrong annotation, leaving potential for more pesticides and/or their metabolites being confirmed in further studies. Thus, the reported results are reflecting only a part of the possible pesticide exposure.

18.
Sci Total Environ ; 851(Pt 1): 157922, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-35961394

Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.


Ozone , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Ecosystem , Geologic Sediments , Larva , Ozone/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Weather , Zebrafish
19.
Evol Appl ; 15(6): 976-991, 2022 Jun.
Article En | MEDLINE | ID: mdl-35782015

Anthropogenic chemicals in freshwater environments contribute majorly to ecosystem degradation and biodiversity decline. In particular anthropogenic organic micropollutants (AOM), a diverse group of compounds, including pesticides, pharmaceuticals, and industrial chemicals, can significantly impact freshwater organisms. AOM were found to impact genetic diversity of freshwater species; however, to which degree AOM cause changes in population genetic structure and allelic richness of freshwater macroinvertebrates remains poorly understood. Here, the impact of AOM on genetic diversity of the common amphipod Gammarus pulex (Linnaeus, 1758) (clade E) was investigated on a regional scale. The site-specific AOM levels and their toxic potentials were determined in water and G. pulex tissue sample extracts for 34 sites along six rivers in central Germany impacted by wastewater effluents and agricultural run-off. Population genetic parameters were determined for G. pulex from the sampling sites by genotyping 16 microsatellite loci. Genetic differentiation among G. pulex from the studied rivers was found to be associated with geographic distance between sites and to differences in site-specific concentrations of AOM. The genetic diversity parameters of G. pulex were found to be related to the site-specific AOM levels. Allelic richness was significantly negatively correlated with levels of AOM in G. pulex tissue (p < 0.003) and was reduced by up to 22% at sites with increased levels of AOM, despite a positive relationship of allelic richness and the presence of waste-water effluent. In addition, the inbreeding coefficient of G. pulex from sites with toxic AOM levels was up to 2.5 times higher than that of G. pulex from more pristine sites. These results indicate that AOM levels commonly found in European rivers significantly contribute to changes in the genetic diversity of an ecologically relevant indicator species.

20.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Article En | MEDLINE | ID: mdl-35792263

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Ozone , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Ecosystem , Ozone/analysis , Sewage , Waste Disposal, Fluid , Wastewater/chemistry , Water/analysis , Water Pollutants, Chemical/analysis
...