Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922927

RESUMEN

Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.

2.
Microbiol Spectr ; 11(3): e0421922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039647

RESUMEN

Scab, caused by the biotrophic fungal pathogen Venturia inaequalis, is the most economically important disease of apples. During infection, V. inaequalis colonizes the subcuticular host environment, where it develops specialized infection structures called runner hyphae and stromata. These structures are thought to be involved in nutrient acquisition and effector (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite their importance, very little is known about how these structures are differentiated. Likewise, nothing is known about how these structures are protected from host defenses or recognition by the host immune system. To better understand these processes, we first performed a glycosidic linkage analysis of sporulating tubular hyphae from V. inaequalis developed in culture. This analysis revealed that the V. inaequalis cell wall is mostly composed of glucans (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next, we used transcriptomics and confocal laser scanning microscopy to provide insights into the cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed that, during subcuticular host colonization, genes of V. inaequalis putatively associated with the biosynthesis of immunogenic carbohydrates, such as chitin and ß-1,6-glucan, are downregulated relative to growth in culture, while on the surface of runner hyphae and stromata, chitin is deacetylated to the less-immunogenic carbohydrate chitosan. These changes are anticipated to enable the subcuticular differentiation of runner hyphae and stromata by V. inaequalis, as well as to protect these structures from host defenses and recognition by the host immune system. IMPORTANCE Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular pathogens, which often cause latent asymptomatic infections, making them difficult to control. A key feature of these pathogens is their ability to differentiate specialized subcuticular infection structures that, to date, remain largely understudied. This is typified by Venturia inaequalis, which causes scab, the most economically important disease of apples. In this study, we show that, during subcuticular host colonization, V. inaequalis downregulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates, chitin and ß-1,6-glucan, and coats its subcuticular infection structures with a less-immunogenic carbohydrate, chitosan. These changes are anticipated to enable host colonization by V. inaequalis and provide a foundation for understanding subcuticular host colonization by other plant-pathogenic fungi. Such an understanding is important, as it may inform the development of novel control strategies against subcuticular plant-pathogenic fungi.


Asunto(s)
Ascomicetos , Quitosano , Malus , Malus/microbiología , Ascomicetos/genética , Pared Celular , Enfermedades de las Plantas/microbiología
3.
Mol Plant Pathol ; 24(5): 474-494, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790136

RESUMEN

Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.


Asunto(s)
Ascomicetos , Cladosporium , Interacciones Microbiota-Huesped , Pinus , Ascomicetos/genética , Cladosporium/genética , Pinus/inmunología , Pinus/microbiología , Genoma Fúngico/genética
4.
BMC Biol ; 20(1): 246, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329441

RESUMEN

BACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.


Asunto(s)
Ascomicetos , Malus , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Hongos del Género Venturia , Malus/genética , Malus/microbiología
5.
Front Microbiol ; 13: 1038444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406440

RESUMEN

Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.

6.
Front Microbiol ; 13: 964851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160260

RESUMEN

Dothistroma septosporum (Ds) and Fulvia fulva (Ff; previously called Cladosporium fulvum) are two closely related Dothideomycete fungal species that cause Dothistroma needle blight in pine and leaf mold in tomato, respectively. During host colonization, these pathogens secrete virulence factors termed effectors to promote infection. In the presence of corresponding host immune receptors, however, these effectors activate plant defenses, including a localized cell death response that halts pathogen growth. We identified two apoplastic effector protein families, Ecp20 and Ecp32, which are conserved between the two pathogens. The Ecp20 family has four paralogues in both species, while the Ecp32 family has four paralogues in D. septosporum and five in F. fulva. Both families have members that are highly expressed during host infection. Members of the Ecp20 family have predicted structural similarity to proteins with a ß-barrel fold, including the Alt a 1 allergen from Alternaria alternata, while members of the Ecp32 family have predicted structural similarity to proteins with a ß-trefoil fold, such as trypsin inhibitors and lectins. Using Agrobacterium tumefaciens-mediated transient transformation assays, each family member was assessed for its ability to trigger cell death in leaves of the non-host species Nicotiana benthamiana and N. tabacum. Using this approach, FfEcp20-2, DsEcp20-3, and FfEcp20-3 from the Ecp20 family, and all members from the Ecp32 family, except for the Ds/FfEcp32-4 pair, triggered cell death in both species. This cell death was dependent on secretion of the effectors to the apoplast. In line with recognition by an extracellular immune receptor, cell death triggered by Ds/FfEcp20-3 and FfEcp32-3 was compromised in N. benthamiana silenced for BAK1 or SOBIR1, which encode extracellular co-receptors involved in transducing defense response signals following apoplastic effector recognition. We then investigated whether DsEcp20-3 and DsEcp20-4 triggered cell death in the host species Pinus radiata by directly infiltrating purified protein into pine needles. Strikingly, as in the non-host species, DsEcp20-3 triggered cell death, while DsEcp20-4 did not. Collectively, our study describes two new candidate effector families with cell death-eliciting activity from D. septosporum and F. fulva and provides evidence that members of these families are recognized by plant immune receptors.

7.
Plants (Basel) ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35448744

RESUMEN

Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of > 90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens.

8.
Front Plant Sci ; 13: 853106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360318

RESUMEN

During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.

9.
Fungal Biol ; 126(1): 35-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34930557

RESUMEN

Apple scab, caused by the fungal pathogen Venturia inaequalis, is the most economically important disease of apple (Malus x domestica) worldwide. To develop durable control strategies against this disease, a better understanding of the genetic mechanisms underlying the growth, reproduction, virulence and pathogenicity of V. inaequalis is required. A major bottleneck for the genetic characterization of V. inaequalis is the inability to easily delete or disrupt genes of interest using homologous recombination. Indeed, no gene deletions or disruptions in V. inaequalis have yet been published. Using the melanin biosynthesis pathway gene trihydroxynaphthalene reductase (THN) as a target for inactivation, which has previously been shown to result in a light-brown colony phenotype when transcriptionally silenced using RNA interference, we show, for the first time, that the CRISPR-Cas9 gene editing system can be successfully applied to the apple scab fungus. More specifically, using a CRISPR-Cas9 single guide RNA (sgRNA) targeted to the THN gene, delivered by a single autonomously replicating Golden Gate-compatible plasmid, we were able to identify six of 36 stable transformants with a light-brown phenotype, indicating an ∼16.7% gene inactivation efficiency. Notably, of the six THN mutants, five had an independent mutation. As part of our pipeline, we also report a high-resolution melting (HRM) curve protocol for the rapid detection of CRISPR-Cas9 gene-edited mutants of V. inaequalis. This protocol identified a single base pair deletion mutation in a sample containing only 5% mutant genomic DNA, indicating high sensitivity for mutant screening. In establishing CRISPR-Cas9 as a tool for gene editing in V. inaequalis, we have provided a strong starting point for studies aiming to decipher gene function in this fungus. The associated HRM curve protocol will enable CRISPR-Cas9 transformants to be screened for gene inactivation in a high-throughput and low-cost manner, which will be particularly powerful in cases where the CRISPR-Cas9-mediated gene inactivation efficiency is low.


Asunto(s)
Ascomicetos , Malus , Ascomicetos/genética , Sistemas CRISPR-Cas , Hongos del Género Venturia , Edición Génica , Malus/genética , Enfermedades de las Plantas
10.
Sci Rep ; 11(1): 19958, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620932

RESUMEN

Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen-angiosperm interactions may also be relevant to pathogen-gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.


Asunto(s)
Ascomicetos/fisiología , Nicotiana/inmunología , Pinus/inmunología , Enfermedades de las Plantas/microbiología , Muerte Celular , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno , Pinus/microbiología , Enfermedades de las Plantas/inmunología , Nicotiana/microbiología
11.
Phytopathology ; 111(1): 116-127, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33112215

RESUMEN

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Asunto(s)
Pinus , Enfermedades de las Plantas , Ascomicetos , Colombia Británica , Humanos , América del Norte , Fitomejoramiento
12.
Mol Plant Pathol ; 21(9): 1131-1148, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638523

RESUMEN

New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.


Asunto(s)
Araucariaceae/parasitología , Genoma/genética , Interacciones Huésped-Patógeno , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Proteínas/metabolismo , Araucariaceae/inmunología , Cycadopsida/inmunología , Cycadopsida/parasitología , Nueva Zelanda , Filogenia , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/parasitología , Proteínas/genética , Interferencia de ARN , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/parasitología
13.
Mol Plant Microbe Interact ; 33(7): 982-995, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32223579

RESUMEN

The family Sclerotiniaceae includes important phytopathogens, such as Botrytis cinerea and Sclerotinia sclerotiorum, that activate plant immune responses to facilitate infection propagation. The mechanisms of plant resistance to these necrotrophic pathogens are still poorly understood. To discover mechanisms of resistance, we used the Ciborinia camelliae (Sclerotiniaceae)-Camellia spp. pathosystem. This fungus induces rapid infection of the blooms of susceptible cultivar Nicky Crisp (Camellia japonica × Camellia pitardii var. pitardii), while Camellia lutchuensis is highly resistant. Genome-wide analysis of gene expression in resistant plants revealed fast modulation of host transcriptional activity 6 h after ascospore inoculation. Ascospores induced the same defense pathways in the susceptible Camellia cultivar but much delayed and coinciding with disease development. We next tested the hypothesis that differences in defense timing influences disease outcome. We induced early defense in the susceptible cultivar using methyl jasmonate and this strongly reduced disease development. Conversely, delaying the response in the resistant species, by infecting it with actively growing fungal mycelium, increased susceptibility. The same plant defense pathways, therefore, contribute to both resistance and susceptibility, suggesting that defense timing is a critical factor in plant health, and resistance against necrotrophic pathogens may occur during the initial biotrophy-like stages.


Asunto(s)
Ascomicetos/patogenicidad , Camellia/genética , Resistencia a la Enfermedad/genética , Flores/microbiología , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Acetatos , Camellia/microbiología , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas/microbiología , Factores de Tiempo
14.
Mol Plant Pathol ; 21(4): 512-526, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32061186

RESUMEN

Fungal effector proteins facilitate host-plant colonization and have generally been characterized as small secreted proteins (SSPs). We classified and functionally tested SSPs from the secretomes of three closely related necrotrophic phytopathogens: Ciborinia camelliae, Botrytis cinerea, and Sclerotinia sclerotiorum. Alignment of predicted SSPs identified a large protein family that share greater than 41% amino acid identity and that have key characteristics of previously described microbe-associated molecular patterns (MAMPs). Strikingly, 73 of the 75 SSP family members were predicted within the secretome of the host-specialist C. camelliae with single-copy homologs identified in the secretomes of the host generalists S. sclerotiorum and B. cinerea. To explore the potential function of this family of SSPs, 10 of the 73 C. camelliae proteins, together with the single-copy homologs from S. sclerotiorum (SsSSP3) and B. cinerea (BcSSP2), were cloned and expressed as recombinant proteins. Infiltration of SsSSP3 and BcSSP2 into host tissue induced rapid necrosis. In contrast, only one of the 10 tested C. camelliae SSPs was able to induce a limited amount of necrosis. Analysis of chimeric proteins consisting of domains from both a necrosis-inducing and a non-necrosis-inducing SSP demonstrated that the C-terminus of the S. sclerotiorum SSP is essential for necrosis-inducing function. Deletion of the BcSSP2 homolog from B. cinerea did not affect growth or pathogenesis. Thus, this research uncovered a family of highly conserved SSPs present in diverse ascomycetes that exhibit contrasting necrosis-inducing functions.


Asunto(s)
Ascomicetos/patogenicidad , Botrytis/patogenicidad , Ascomicetos/metabolismo , Botrytis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
15.
Fungal Genet Biol ; 135: 103300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31730909

RESUMEN

The detrimental effect of fungal pathogens on forest trees is an increasingly important problem that has implications for the health of our planet. Despite this, the study of molecular plant-microbe interactions in forest trees is in its infancy, and very little is known about the roles of effector molecules from forest pathogens. Dothistroma septosporum causes a devastating needle blight disease of pines, and intriguingly, is closely related to Cladosporium fulvum, a tomato pathogen in which pioneering effector biology studies have been carried out. Here, we studied D. septosporum effectors that are shared with C. fulvum, by comparing gene sequences from global isolates of D. septosporum and assessing effector function in both host and non-host plants. Many of the effectors were predicted to be non-functional in D. septosporum due to their pseudogenization or low expression in planta, suggesting adaptation to lifestyle and host. Effector sequences were polymorphic among a global collection of D. septosporum isolates, but there was no evidence for positive selection. The DsEcp2-1 effector elicited cell death in the non-host plant Nicotiana tabacum, whilst D. septosporum DsEcp2-1 mutants showed increased colonization of pine needles. Together these results suggest that DsEcp2-1 might be recognized by an immune receptor in both angiosperm and gymnosperm plants. This work may lead to the identification of plant targets for DsEcp2-1 that will provide much needed information on the molecular basis of gymnosperm-pathogen interactions in forests, and may also lead to novel methods of disease control.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Ascomicetos/genética , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/genética , Pinus/microbiología , Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Pinus/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/microbiología , Virulencia
16.
Microorganisms ; 7(10)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590374

RESUMEN

Pathogen incursions are a major impediment for global forest health. How pathogens and forest trees coexist over time, without pathogens simply killing their long-lived hosts, is a critical but unanswered question. The Dothistroma Needle Blight pathogen Dothistroma septosporum was introduced into New Zealand in the 1960s and remains a low-diversity, asexual population, providing a unique opportunity to analyze the evolution of a forest pathogen. Isolates of D. septosporum collected from commercial pine forests over 50 years were compared at whole-genome and phenotype levels. Limited genome diversity and increased diversification among recent isolates support the premise of a single introduction event. Isolates from the 1960s show significantly elevated virulence against Pinus radiata seedlings and produce higher levels of the virulence factor dothistromin compared to isolates collected in the 1990s and 2000s. However, later isolates have no increased tolerance to copper, used in fungicide treatments of infested forests and traditionally assumed to be a strong selection pressure. The isolated New Zealand population of this forest pathogen therefore appears to have become less virulent over time, likely in part to maintain the viability of its long-lived host. This finding has broad implications for forest health and highlights the benefits of long-term pathogen surveys.

17.
Fungal Biol ; 123(5): 397-407, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31053329

RESUMEN

Fungal secondary metabolites have important functions for the fungi that produce them, such as roles in virulence and competition. The hemibiotrophic pine needle pathogen Dothistroma septosporum has one of the lowest complements of secondary metabolite (SM) backbone genes of plant pathogenic fungi, indicating that this fungus produces a limited range of SMs. Amongst these SMs is dothistromin, a well-characterised polyketide toxin and virulence factor that is required for expansion of disease lesions in Dothistroma needle blight disease. Dothistromin genes are dispersed across six loci on one chromosome, rather than being clustered as for most SM genes. We explored other D. septosporum SM genes to determine if they are associated with gene clusters, and to predict what their likely products and functions might be. Of nine functional SM backbone genes in the D. septosporum genome, only four were expressed under a range of in planta and in culture conditions, one of which was the dothistromin PKS backbone gene. Of the other three expressed genes, gene knockout studies suggested that DsPks1 and DsPks2 are not required for virulence and attempts to determine a functional squalestatin-like SM product for DsPks2 were not successful. However preliminary evidence suggested that DsNps3, the only SM backbone gene to be most highly expressed in the early stage of disease, appears to be a virulence factor. Thus, despite the small number of SM backbone genes in D. septosporum, most of them appear to be poorly expressed or dispensable for virulence in planta. This work contributes to a growing body of evidence that many fungal secondary metabolite gene clusters might be non-functional and may be evolutionary relics.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Redes y Vías Metabólicas/genética , Metabolismo Secundario , Antraquinonas/metabolismo , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , Perfilación de la Expresión Génica , Familia de Multigenes , Pinus/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología
18.
Mol Plant Pathol ; 20(6): 784-799, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30938073

RESUMEN

Dothistroma needle blight is one of the most devastating pine tree diseases worldwide. New and emerging epidemics have been frequent over the last 25 years, particularly in the Northern Hemisphere, where they are in part associated with changing weather patterns. One of the main Dothistroma needle blight pathogens, Dothistroma septosporum, has a global distribution but most molecular plant pathology research has been confined to Southern Hemisphere populations that have limited genetic diversity. Extensive genomic and transcriptomic data are available for a D. septosporum reference strain from New Zealand, where an introduced clonal population of the pathogen predominates. Due to the global importance of this pathogen, we determined whether the genome of this reference strain is representative of the species worldwide by sequencing the genomes of 18 strains sampled globally from different pine hosts. Genomic polymorphism shows substantial variation within the species, clustered into two distinct groups of strains with centres of diversity in Central and South America. A reciprocal chromosome translocation uniquely identifies the New Zealand strains. Globally, strains differ in their production of the virulence factor dothistromin, with extremely high production levels in strain ALP3 from Germany. Comparisons with the New Zealand reference revealed that several strains are aneuploids; for example, ALP3 has duplications of three chromosomes. Increased gene copy numbers therefore appear to contribute to increased production of dothistromin, emphasizing that studies of population structure are a necessary adjunct to functional analyses of genetic polymorphisms to identify the molecular basis of virulence in this important forest pathogen.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Duplicación Cromosómica/fisiología , Regulación Fúngica de la Expresión Génica/genética , Enfermedades de las Plantas/microbiología , Aneuploidia , Antraquinonas/metabolismo , Ascomicetos/metabolismo , Duplicación Cromosómica/genética , Elementos Transponibles de ADN/genética , Metagenómica , Enfermedades de las Plantas/genética
19.
Mol Microbiol ; 107(4): 508-522, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29240271

RESUMEN

Genes required for fungal secondary metabolite production are usually clustered, co-regulated and expressed in stationary growth phase. Chromatin modification has an important role in co-regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP-qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin-level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.


Asunto(s)
Antraquinonas/metabolismo , Ascomicetos/patogenicidad , Cromatina/metabolismo , Genes Fúngicos , Familia de Multigenes/genética , Acetilación , Ascomicetos/genética , Bosques , Regulación Fúngica de la Expresión Génica/genética , Genes Reguladores/genética , Sitios Genéticos/genética , Código de Histonas/genética , Metilación , Mutación , Pinus/microbiología
20.
Mol Plant Microbe Interact ; 31(1): 145-162, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29144204

RESUMEN

Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.


Asunto(s)
Cladosporium/metabolismo , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Alelos , Secuencia de Aminoácidos , Cladosporium/química , Cladosporium/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteómica , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...