Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 25(19): 4260-4, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26299347

RESUMEN

E-cadherin is a ubiquitous trans-membrane protein that has important functions in cellular contacts and has been shown to play a role in the epithelial mesenchymal transition. We have previously reported the use of an HTS screen to identify compounds that are capable of restoring e-cadherin in cancer cells. Here, we report the additional medicinal chemistry optimization of these molecules, resulting in new molecules that restore e-cadherin expression at low micromolar concentrations. Further, we report preliminary pharmacokinetic data on a compound, ML327, that can be used as a probe of e-cadherin restoration.


Asunto(s)
Cadherinas/biosíntesis , Isoxazoles/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Ratones , Estructura Molecular , Ratas , Relación Estructura-Actividad
2.
Biochim Biophys Acta ; 1842(6): 831-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24525025

RESUMEN

Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Asunto(s)
Nucléolo Celular/metabolismo , Ribosomas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Puntos de Control del Ciclo Celular/genética , Nucléolo Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribosomas/genética , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/genética
3.
ACS Chem Biol ; 6(5): 452-65, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21241068

RESUMEN

E-cadherin is a transmembrane protein that maintains intercellular contacts and cell polarity in epithelial tissue. The down-regulation of E-cadherin contributes to the induction of the epithelial-to-mesenchymal transition (EMT), resulting in an increased potential for cellular invasion of surrounding tissues and entry into the bloodstream. Loss of E-cadherin has been observed in a variety of human tumors as a result of somatic mutations, chromosomal deletions, silencing of the CDH1 gene promoter, and proteolytic cleavage. To date, no compounds directly targeting E-cadherin restoration have been developed. Here, we report the development and use of a novel high-throughput immunofluorescent screen to discover lead compounds that restore E-cadherin expression in the SW620 colon adenocarcinoma cell line. We confirmed restoration of E-cadherin using immunofluorescent microscopy and were able to determine the EC(50) for selected compounds using an optimized In-Cell Western assay. The profiled compounds were also shown to have a minimal effect on cell proliferation but did decrease cellular invasion. We have also conducted preliminary investigations to elucidate a discrete molecular target to account for the phenotypic behavior of these small molecules and have noted a modest increase in E-cadherin mRNA transcripts, and RNA-Seq analysis demonstrated that potent analogues elicited a 10-fold increase in CDH1 (E-cadherin) gene expression.


Asunto(s)
Cadherinas/biosíntesis , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Invasividad Neoplásica/prevención & control , Cadherinas/genética , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Transición Epitelial-Mesenquimal , Humanos , ARN Mensajero/metabolismo
4.
Cancer Res ; 69(17): 6773-81, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19690147

RESUMEN

Sprouty2 is a feedback regulator that controls the Ras/Raf/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase (MAPK) pathway at multiple levels, one way being through direct interaction with Raf kinases. Consistent with a role as a tumor suppressor, Sprouty2 expression is often down-regulated in human cancers. However, Sprouty2 is up-regulated in some cancers, suggesting the existence of posttranscriptional mechanisms that permit evasion of Sprouty2-mediated antitumorigenic properties. We report that MAPK activation induces Sprouty2 phosphorylation on six serine residues, which reduced Sprouty2 association with wild-type B-Raf. Mutation of these six serines to nonphosphorylatable alanines increased the ability of Sprouty2 to inhibit growth factor-induced MAPK activation. Oncogenic B-Raf mutants such as B-Raf V600E did not associate with Sprouty2, but this resistance to Sprouty2 binding was not due to phosphorylation. Instead, the active kinase conformation induced by oncogenic mutation prevents Sprouty2 binding. These results reveal a dual mechanism that affects the Sprouty2/B-Raf interaction: Sprouty phosphorylation and B-Raf conformation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias/enzimología , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Sitios de Unión , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana , Ratones , Mutación , Células 3T3 NIH , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética
5.
Cancer Res ; 67(4): 1609-17, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17308101

RESUMEN

Nucleophosmin (B23) is a nucleolar phosphoprotein that has been implicated in numerous cellular processes. In particular, nucleophosmin interacts with nucleolar components of newly synthesized ribosomes to promote ribosome nuclear export. Nucleophosmin is a classic mitogen-induced protein, with changes in its expression correlating with growth factor stimulation. In this study, we examined the underlying mechanism of nucleophosmin induction and showed that hyperproliferative signals emanating from oncogenic H-Ras(V12) cause tremendous increases in nucleophosmin protein expression. Nucleophosmin protein accumulation was dependent on mammalian target of rapamycin (mTOR) activation, as rapamycin completely prevented nucleophosmin induction. Consistent with this finding, genetic ablation of Tsc1, a major upstream inhibitor of mTOR, resulted in nucleophosmin protein induction through increased translation of existing nucleophosmin mRNAs. Increases in nucleophosmin protein accumulation were suppressed by reintroduction of TSC1. Induction of nucleophosmin through Tsc1 loss resulted in a greater pool of actively translating ribosomes in the cytoplasm, higher overall rates of protein synthesis, and increased cell proliferation, all of which were dependent on efficient nucleophosmin nuclear export. Nucleophosmin protein accumulation in the absence of Tsc1 promoted the nuclear export of maturing ribosome subunits, providing a mechanistic link between TSC1/mTOR signaling, nucleophosmin-mediated nuclear export of ribosome subunits, protein synthesis levels, and cell growth.


Asunto(s)
Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Cromonas/farmacología , Humanos , Ratones , Morfolinas/farmacología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Nucleofosmina , Factor de Crecimiento Derivado de Plaquetas/farmacología , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas ras/metabolismo
6.
Mol Cell Biol ; 26(10): 3798-809, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648475

RESUMEN

Nucleophosmin (NPM/B23) is a key regulator in the regulation of a number of processes including centrosome duplication, maintenance of genomic integrity, and ribosome biogenesis. While the mechanisms underlying NPM function are largely uncharacterized, NPM loss results in severe dysregulation of developmental and growth-related events. We show that NPM utilizes a conserved CRM1-dependent nuclear export sequence in its amino terminus to enable its shuttling between the nucleolus/nucleus and cytoplasm. In search of NPM trafficking targets, we biochemically purified NPM-bound protein complexes from HeLa cell lysates. Consistent with NPM's proposed role in ribosome biogenesis, we isolated ribosomal protein L5 (rpL5), a known chaperone for the 5S rRNA. Direct interaction of NPM with rpL5 mediated the colocalization of NPM with maturing nuclear 60S ribosomal subunits, as well as newly exported and assembled 80S ribosomes and polysomes. Inhibition of NPM shuttling or loss of NPM blocked the nuclear export of rpL5 and 5S rRNA, resulting in cell cycle arrest and demonstrating that NPM and its nuclear export provide a unique and necessary chaperoning activity to rpL5/5S.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Western Blotting , Cromatografía Liquida , Secuencia de Consenso , Secuencia Conservada , Electroforesis en Gel de Poliacrilamida , Evolución Molecular , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Indoles , Carioferinas/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Nucleofosmina , Pruebas de Precipitina , Proteoma/análisis , Proteómica , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/metabolismo , Rodaminas , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fracciones Subcelulares/química , Proteína Exportina 1
7.
Mol Cell Biol ; 25(23): 10543-55, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287866

RESUMEN

Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.


Asunto(s)
Caspasas/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Caspasa 9 , Caspasas/química , Caspasas/genética , Extractos Celulares , Línea Celular , Citosol/efectos de los fármacos , Citosol/enzimología , Activación Enzimática , Humanos , Isoenzimas/metabolismo , Ratones , Datos de Secuencia Molecular , Presión Osmótica , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología
8.
Mol Cell Biol ; 24(21): 9327-38, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15485902

RESUMEN

The ARF tumor suppressor is widely regarded as an upstream activator of p53-dependent growth arrest and apoptosis. However, recent findings indicate that ARF can also regulate the cell cycle in the absence of p53. In search of p53-independent ARF targets, we isolated nucleophosmin (NPM/B23), a protein we show is required for proliferation, as a novel ARF binding protein. In response to hyperproliferative signals, ARF is upregulated, resulting in the nucleolar retention of NPM and concomitant cell cycle arrest. The Mdm2 oncogene outcompetes NPM/B23 for ARF binding, and introduction of Mdm2 reverses ARF's p53-independent properties: in vitro, NPM is released from ARF-containing protein complexes, and in vivo S phase progression ensues. ARF induction by oncogenes or replicative senescence does not alter NPM/B23 protein levels but rather prevents its nucleocytoplasmic shuttling without inhibiting rRNA processing. By actively sequestering NPM in the nucleolus, ARF utilizes an additional mechanism of tumor suppression, one that is readily antagonized by Mdm2.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteína p14ARF Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleofosmina , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteína p14ARF Supresora de Tumor/antagonistas & inhibidores , Proteína p14ARF Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Nat Cell Biol ; 5(7): 647-54, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12792650

RESUMEN

Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction. However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation, although the targets are unknown. Here, we show that the ERK MAPK pathway inhibits caspase-9 activity by direct phosphorylation. In mammalian cell extracts, cytochrome c-induced activation of caspases-9 and -3 requires okadaic-acid-sensitive protein phosphatase activity. The opposing protein kinase activity is overcome by treatment with the broad-specificity kinase inhibitor staurosporine or with inhibitors of MEK1/2. Caspase-9 is phosphorylated at Thr 125, a conserved MAPK consensus site targeted by ERK2 in vitro, in a MEK-dependent manner in cells stimulated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Phosphorylation at Thr 125 is sufficient to block caspase-9 processing and subsequent caspase-3 activation. We suggest that phosphorylation and inhibition of caspase-9 by ERK promotes cell survival during development and tissue homeostasis. This mechanism may also contribute to tumorigenesis when the ERK MAPK pathway is constitutively activated.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Supervivencia Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Células Eucariotas/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células 3T3 , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases/genética , Caspasa 3 , Caspasa 9 , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Grupo Citocromo c/efectos de los fármacos , Grupo Citocromo c/metabolismo , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/farmacología , Células Eucariotas/efectos de los fármacos , Células HeLa , Humanos , MAP Quinasa Quinasa 1 , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Proteínas Recombinantes de Fusión , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA