Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836260

RESUMEN

In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C K-edge. From the XMCD sum rules an estimated magnetic moment of 0.3 µB/C atom, while a more accurate estimation of 0.49 µB/C atom was obtained by carrying out a PNR measurement at 300 K. The results indicate that the higher magnetic moment in Co is counterbalanced by the larger lattice mismatch between the Co-C (1.6%) and the slightly longer bond length, inducing a magnetic moment in graphene that is similar to that reported in Ni/graphene heterostructures.

2.
ACS Appl Mater Interfaces ; 15(18): 22367-22376, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37092734

RESUMEN

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 µB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 µB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene's Dirac cone as a result of the strong C pz-Ni 3d hybridization.

3.
ACS Appl Mater Interfaces ; 14(36): 41328-41336, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36036893

RESUMEN

Filtering nanoparticulate aerosols from air streams is important for a wide range of personal protection equipment (PPE), including masks used for medical research, healthcare, law enforcement, first responders, and military applications. Conventional PPEs capable of filtering nanoparticles <300 nm are typically bulky and sacrifice breathability to maximize protection from exposure to harmful nanoparticulate aerosols including viruses ∼20-300 nm from air streams. Here, we show that nanopores introduced into centimeter-scale monolayer graphene supported on polycarbonate track-etched supports via a facile oxygen plasma etch can allow for filtration of aerosolized SiO2 nanoparticles of ∼5-20 nm from air steams while maintaining air permeance of ∼2.28-7.1 × 10-5 mol m-2 s-1 Pa-1. Furthermore, a systematic increase in oxygen plasma etch time allows for a tunable size-selective filtration of aerosolized nanoparticles. We demonstrate a new route to realize ultra-compact, lightweight, and conformal form-factor filters capable of blocking sub-20 nm aerosolized nanoparticles with particular relevance for biological/viral threat mitigation.

4.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33461660

RESUMEN

While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices.


Many water-dwelling bacteria can cause severe diseases such as cholera, typhoid or leptospirosis. One way to prevent outbreaks is to test water sources to find out which species of microbes they contain, and at which levels. Traditionally, this involves taking a water sample, followed by growing a few species of 'indicator bacteria' that help to estimate whether the water is safe. An alternative technique, called metagenomics, has been available since the mid-2000s. It consists in reviewing (or 'sequencing') the genetic information of most of the bacteria present in the water, which allows scientists to spot harmful species. Both methods, however, require well-equipped laboratories with highly trained staff, making them challenging to use in remote areas. The MinION is a pocket-sized device that ­ when paired with a laptop or mobile phone ­ can sequence genetic information 'on the go'. It has already been harnessed during Ebola, Zika or SARS-CoV-2 epidemics to track the genetic information of viruses in patients and environmental samples. However, it is still difficult to use the MinION and other sequencers to monitor bacteria in water sources, partly because the genetic information of the microbes is highly fragmented during DNA extraction. To address this challenge, Urban, Holzer et al. set out to optimise hardware and software protocols so the MinION could be used to detect bacterial species present in rivers. The tests focussed on the River Cam in Cambridge, UK, a waterway which faces regular public health problems: local rowers and swimmers often contract waterborne infections, sometimes leading to river closures. For six months, Urban, Holzer et al. used the MinION to map out the bacteria present across nine river sites, assessing the diversity of species and the presence of disease-causing microbes in the water. In particular, the results showed that optimising the protocols made it possible to tell the difference between closely related species ­ an important feature since harmful and inoffensive bacteria can sometimes be genetically close. The data also revealed that the levels of harmful bacteria were highest downstream of urban river sections, near a water treatment plant and river barge moorings. Together, these findings demonstrate that optimising MinION protocols can turn this device into a useful tool to easily monitor water quality. Around the world, climate change, rising urbanisation and the intensification of agriculture all threaten water quality. In fact, access to clean water is one of the United Nations sustainable development goals for 2030. Using the guidelines developed by Urban, Holzer et al., communities could harness the MinION to monitor water quality in remote areas, offering a cost-effective, portable DNA analysis tool to protect populations against deadly diseases.


Asunto(s)
Agua Dulce/microbiología , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética , Secuenciación de Nanoporos/métodos , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional/métodos , Monitoreo del Ambiente/métodos , Geografía , ARN Ribosómico 16S/genética , Ríos/microbiología , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Reino Unido
5.
Chem Mater ; 32(18): 7766-7776, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32982043

RESUMEN

We combine spatially resolved scanning photoelectron spectroscopy with confocal Raman and optical microscopy to reveal how the oxidation of the buried graphene-Cu interface relates to the Cu crystallographic orientation. We analyze over 100 different graphene covered Cu (high and low index) orientations exposed to air for 2 years. Four general oxidation modes are observed that can be mapped as regions onto the polar plot of Cu surface orientations. These modes are (1) complete, (2) irregular, (3) inhibited, and (4) enhanced wrinkle interface oxidation. We present a comprehensive characterization of these modes, consider the underlying mechanisms, compare air and water mediated oxidation, and discuss this in the context of the diverse prior literature in this area. This understanding incorporates effects from across the wide parameter space of 2D material interface engineering, relevant to key challenges in their emerging applications, ranging from scalable transfer to electronic contacts, encapsulation, and corrosion protection.

6.
ACS Nano ; 13(8): 8926-8935, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31322332

RESUMEN

We report high room-temperature mobility in single-layer graphene grown by chemical vapor deposition (CVD) after wet transfer on SiO2 and hexagonal boron nitride (hBN) encapsulation. By removing contaminations, trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to ∼70000 cm2 V-1 s-1 at room temperature and ∼120 000 cm2 V-1 s-1 at 9K. These are more than twice those of previous wet-transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room-temperature mobilities of ∼30 000 cm2 V-1 s-1. These results show that, with appropriate encapsulation and cleaning, room-temperature mobilities well above 10 000 cm2 V-1 s-1 can be obtained in samples grown by CVD and transferred using a conventional, easily scalable PMMA-based wet approach.

7.
ACS Nano ; 13(2): 2114-2126, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30642169

RESUMEN

Hexagonal boron nitride (h-BN) is the only known material aside from graphite with a structure composed of simple, stable, noncorrugated atomically thin layers. While historically used as a lubricant in powder form, h-BN layers have become particularly attractive as an ultimately thin insulator, barrier, or encapsulant. Practically all emerging electronic and photonic device concepts currently rely on h-BN exfoliated from small bulk crystallites, which limits device dimensions and process scalability. We here focus on a systematic understanding of Pt-catalyzed h-BN crystal formation, in order to address this integration challenge for monolayer h-BN via an integrated chemical vapor deposition (CVD) process that enables h-BN crystal domain sizes exceeding 0.5 mm and a merged, continuous layer in a growth time of less than 45 min. The process makes use of commercial, reusable Pt foils and allows a delamination process for easy and clean h-BN layer transfer. We demonstrate sequential pick-up for the assembly of graphene/h-BN heterostructures with atomic layer precision, while minimizing interfacial contamination. The approach can be readily combined with other layered materials and enables the integration of CVD h-BN into high-quality, reliable 2D material device layer stacks.

8.
ACS Nano ; 12(8): 8555-8563, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30080966

RESUMEN

Adequate characterization and quality control of atomically thin layered materials (2DM) has become a serious challenge particularly given the rapid advancements in their large area manufacturing and numerous emerging industrial applications with different substrate requirements. Here, we focus on ellipsometric contrast micrography (ECM), a fast intensity mode within spectroscopic imaging ellipsometry, and show that it can be effectively used for noncontact, large area characterization of 2DM to map coverage, layer number, defects and contamination. We demonstrate atomic layer resolved, quantitative mapping of chemical vapor deposited graphene layers on Si/SiO2-wafers, but also on rough Cu catalyst foils, highlighting that ECM is applicable to all application relevant substrates. We discuss the optimization of ECM parameters for high throughput characterization. While the lateral resolution can be less than 1 µm, we particularly explore fast scanning and demonstrate imaging of a 4″ graphene wafer in 47 min at 10 µm lateral resolution, i.e., an imaging speed of 1.7 cm2/min. Furthermore, we show ECM of monolayer hexagonal BN (h-BN) and of h-BN/graphene bilayers, highlighting that ECM is applicable to a wide range of 2D layered structures that have previously been very challenging to characterize and thereby fills an important gap in 2DM metrology.

9.
ACS Appl Mater Interfaces ; 10(13): 10618-10621, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29557636

RESUMEN

A positive shift in the Dirac point in graphene field-effect transistors was observed with Hall-effect measurements coupled with Kelvin-probe measurements at room temperature. This shift can be explained by the asymmetrical behavior of the contact resistance by virtue of the electron injection barrier at the source contact. As an outcome, an intrinsic resistance is given to allow a retrieval of an intrinsic carrier mobility found to be decreased with increasing gate bias, suggesting the dominance of short-range scattering in a single-layer graphene field-effect transistor. These results analytically correlate the field-effect parameters with intrinsic graphene properties.

10.
Sci Rep ; 7(1): 10625, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878213

RESUMEN

We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapour deposited graphene films on sapphire, silicon dioxide/silicon and germanium. We validate the technique against measurements performed with previously established conventional transmission based THz-TDS and are able to resolve conductivity changes in response to induced back-gate voltages. Compared to the transmission geometry, measurement in reflection mode requires careful alignment and complex analysis, but circumvents the need of a terahertz transparent substrate, potentially enabling fast, contactless, in-line characterisation of graphene films on non-insulating substrates such as germanium.

11.
ACS Nano ; 11(2): 1340-1346, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28157333

RESUMEN

From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current-voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion.

12.
ACS Appl Mater Interfaces ; 8(48): 33072-33082, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934130

RESUMEN

The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications.

13.
ACS Appl Mater Interfaces ; 8(44): 30564-30575, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27723305

RESUMEN

Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials.

14.
Sensors (Basel) ; 16(9)2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27563903

RESUMEN

Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies.

15.
Nano Lett ; 16(2): 1250-61, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26756610

RESUMEN

Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.


Asunto(s)
Compuestos de Boro/química , Nanoestructuras/química , Compuestos de Amonio/química , Compuestos de Boro/síntesis química , Catálisis , Hierro/química , Cinética , Nanoestructuras/ultraestructura , Nitrógeno/química , Propiedades de Superficie , Difracción de Rayos X
16.
Nanoscale ; 8(4): 2149-58, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26730836

RESUMEN

The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.

17.
Chem Mater ; 28(24): 8905-8915, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28133416

RESUMEN

The mechanism by which Cu catalyst pretreatments control graphene nucleation density in scalable chemical vapor deposition (CVD) is systematically explored. The intrinsic and extrinsic carbon contamination in the Cu foil is identified by time-of-flight secondary ion mass spectrometry as a major factor influencing graphene nucleation and growth. By selectively oxidizing the backside of the Cu foil prior to graphene growth, a drastic reduction of the graphene nucleation density by 6 orders of magnitude can be obtained. This approach decouples surface roughness effects and at the same time allows us to trace the scavenging effect of oxygen on deleterious carbon impurities as it permeates through the Cu bulk. Parallels to well-known processes in Cu metallurgy are discussed. We also put into context the relative effectiveness and underlying mechanisms of the most widely used Cu pretreatments, including wet etching and electropolishing, allowing a rationalization of current literature and determination of the relevant parameter space for graphene growth. Taking into account the wider CVD growth parameter space, guidelines are discussed for high-throughput manufacturing of "electronic-quality" monolayer graphene films with domain size exceeding 1 mm, suitable for emerging industrial applications, such as electronics and photonics.

18.
J Phys Chem Lett ; 6(14): 2714-21, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26240694

RESUMEN

Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for "electronic-grade" large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth.

19.
Nanoscale ; 7(30): 13135-42, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26176814

RESUMEN

Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...