Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37510161

RESUMEN

Obstructive sleep apnea (OSA) is a prevalent sleep disorder that affects approximately 3-7% of males and 2-5% of females. In the United States alone, 50-70 million adults suffer from various sleep disorders. OSA is characterized by recurrent episodes of breathing cessation during sleep, thereby leading to adverse effects such as daytime sleepiness, cognitive impairment, and reduced concentration. It also contributes to an increased risk of cardiovascular conditions and adversely impacts patient overall quality of life. As a result, numerous researchers have focused on developing automated detection models to identify OSA and address these limitations effectively and accurately. This study explored the potential benefits of utilizing machine learning methods based on demographic information for diagnosing the OSA syndrome. We gathered a comprehensive dataset from the Torr Sleep Center in Corpus Christi, Texas, USA. The dataset comprises 31 features, including demographic characteristics such as race, age, sex, BMI, Epworth score, M. Friedman tongue position, snoring, and more. We devised a novel process encompassing pre-processing, data grouping, feature selection, and machine learning classification methods to achieve the research objectives. The classification methods employed in this study encompass decision tree (DT), naive Bayes (NB), k-nearest neighbor (kNN), support vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LR), and subspace discriminant (Ensemble) classifiers. Through rigorous experimentation, the results indicated the superior performance of the optimized kNN and SVM classifiers for accurately classifying sleep apnea. Moreover, significant enhancements in model accuracy were observed when utilizing the selected demographic variables and employing data grouping techniques. For instance, the accuracy percentage demonstrated an approximate improvement of 4.5%, 5%, and 10% with the feature selection approach when applied to the grouped data of Caucasians, females, and individuals aged 50 or below, respectively. Furthermore, a comparison with prior studies confirmed that effective data grouping and proper feature selection yielded superior performance in OSA detection when combined with an appropriate classification method. Overall, the findings of this research highlight the importance of leveraging demographic information, employing proper feature selection techniques, and utilizing optimized classification models for accurate and efficient OSA diagnosis.

2.
Cognit Comput ; : 1-38, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37362196

RESUMEN

Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.

3.
Biomed Signal Process Control ; 84: 104718, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36811003

RESUMEN

Feature Selection (FS) techniques extract the most recognizable features for improving the performance of classification methods for medical applications. In this paper, two intelligent wrapper FS approaches based on a new metaheuristic algorithm named the Snake Optimizer (SO) are introduced. The binary SO, called BSO, is built based on an S-shape transform function to handle the binary discrete values in the FS domain. To improve the exploration of the search space by BSO, three evolutionary crossover operators (i.e., one-point crossover, two-point crossover, and uniform crossover) are incorporated and controlled by a switch probability. The two newly developed FS algorithms, BSO and BSO-CV, are implemented and assessed on a real-world COVID-19 dataset and 23 disease benchmark datasets. According to the experimental results, the improved BSO-CV significantly outperformed the standard BSO in terms of accuracy and running time in 17 datasets. Furthermore, it shrinks the COVID-19 dataset's dimension by 89% as opposed to the BSO's 79%. Moreover, the adopted operator on BSO-CV improved the balance between exploitation and exploration capabilities in the standard BSO, particularly in searching and converging toward optimal solutions. The BSO-CV was compared against the most recent wrapper-based FS methods; namely, the hyperlearning binary dragonfly algorithm (HLBDA), the binary moth flame optimization with Lévy flight (LBMFO-V3), the coronavirus herd immunity optimizer with greedy crossover operator (CHIO-GC), as well as four filter methods with an accuracy of more than 90% in most benchmark datasets. These optimistic results reveal the great potential of BSO-CV in reliably searching the feature space.

4.
Neural Comput Appl ; 35(8): 6153-6184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36408290

RESUMEN

Feature Selection (FS) aims to ameliorate the classification rate of dataset models by selecting only a small set of appropriate features from the initial range of features. In consequence, a reliable optimization method is needed to deal with the matters involved in this problem. Often, traditional methods fail to optimally reduce the high dimensionality of the feature space of complex datasets, which lead to the elicitation of weak classification models. Meta-heuristics can offer a favorable classification rate for high-dimensional datasets. Here, a binary version of a new human-based algorithm named Ali Baba and the Forty Thieves (AFT) was applied to tackle a pool of FS problems. Although AFT is an efficient meta-heuristic for optimizing many problems, it sometimes exhibits premature convergence and low search performance. These issues were mitigated by proposing three enhanced versions of AFT, namely: (1) A Binary Multi-layered AFT called BMAFT which uses hierarchical and distributed frameworks, (2) Binary Elitist AFT (BEAFT) which uses an elitist learning strategy, and, (3) Binary Self-adaptive AFT (BSAFT) which uses an adapted tracking distance parameter. These versions along with the basic Binary AFT (BAFT) were expansively assessed on twenty-four problems gathered from different repositories. The results showed that the proposed algorithms substantially enhance the performance of BAFT in terms of convergence speed and solution accuracy. On top of that, the overall results showed that BMAFT is the most competitive, which provided the best results with excellent performance scores compared to other competing algorithms.

5.
Comput Biol Med ; 147: 105675, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687926

RESUMEN

In this paper, an enhanced binary version of the Rat Swarm Optimizer (RSO) is proposed to deal with Feature Selection (FS) problems. FS is an important data reduction step in data mining which finds the most representative features from the entire data. Many FS-based swarm intelligence algorithms have been used to tackle FS. However, the door is still open for further investigations since no FS method gives cutting-edge results for all cases. In this paper, a recent swarm intelligence metaheuristic method called RSO which is inspired by the social and hunting behavior of a group of rats is enhanced and explored for FS problems. The binary enhanced RSO is built based on three successive modifications: i) an S-shape transfer function is used to develop binary RSO algorithms; ii) the local search paradigm of particle swarm optimization is used with the iterative loop of RSO to boost its local exploitation; iii) three crossover mechanisms are used and controlled by a switch probability to improve the diversity. Based on these enhancements, three versions of RSO are produced, referred to as Binary RSO (BRSO), Binary Enhanced RSO (BERSO), and Binary Enhanced RSO with Crossover operators (BERSOC). To assess the performance of these versions, a benchmark of 24 datasets from various domains is used. The proposed methods are assessed concerning the fitness value, number of selected features, classification accuracy, specificity, sensitivity, and computational time. The best performance is achieved by BERSOC followed by BERSO and then BRSO. These proposed versions are comparatively assessed against 25 well-regarded metaheuristic methods and five filter-based approaches. The obtained results underline their superiority by producing new best results for some datasets.


Asunto(s)
Algoritmos , Minería de Datos , Animales , Benchmarking , Ratas
6.
Comput Biol Med ; 141: 105152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952338

RESUMEN

This paper proposes a binary version of Horse herd Optimization Algorithm (HOA) to tackle Feature Selection (FS) problems. This algorithm mimics the conduct of a pack of horses when they are trying to survive. To build a Binary version of HOA, or referred to as BHOA, twofold of adjustments were made: i) Three transfer functions, namely S-shape, V-shape and U-shape, are utilized to transform the continues domain into a binary one. Four configurations of each transfer function are also well studied to yield four alternatives. ii) Three crossover operators: one-point, two-point and uniform are also suggested to ensure the efficiency of the proposed method for FS domain. The performance of the proposed fifteen BHOA versions is examined using 24 real-world FS datasets. A set of six metric measures was used to evaluate the outcome of the optimization methods: accuracy, number of features selected, fitness values, sensitivity, specificity and computational time. The best-formed version of the proposed versions is BHOA with S-shape and one-point crossover. The comparative evaluation was also accomplished against 21 state-of-the-art methods. The proposed method is able to find very competitive results where some of them are the best-recorded. Due to the viability of the proposed method, it can be further considered in other areas of machine learning.


Asunto(s)
Algoritmos , Aprendizaje Automático , Animales , Caballos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA