RESUMEN
Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability.
Asunto(s)
Triticale/crecimiento & desarrollo , Genotipo , Endogamia , Meiosis , Triticale/citología , Triticale/genéticaRESUMEN
Leaf rust is one of the most destructive diseases affecting wheat worldwide. The most effective way to control it is to use resistant cultivars. Resistance based on slow-rusting adult plant resistance (APR) genes has proven to be the best method for developing cultivars with durable resistance. A source of slow-rusting APR for leaf rust is the Brazilian wheat cultivar Toropi. The Toropi/IAC 13 F2 and F7 recombinant inbred lines (RILs) were developed in previous studies. Phenotypic analysis of the F2 and F7 RILs showed that 2 recessive genes that were temporarily named trp-1 and trp-2 conferred APR in Toropi. In the present study, we used monosomic families and amplified fragment length polymorphism (AFLP), sequence-tagged site, and simple sequence repeat (SSR) markers to map trp-1 and trp-2 on wheat chromosomes. Analysis of the F2 monosomic RIL showed that trp- 1 and trp-2 were located on chromosomes 1A and 4D, respectively. AFLP analysis of the F7 RIL identified 2 independent AFLP markers, XPacgMcac3 and XPacgMcac6, which were associated with Toropi APR. These markers explained 71.5% of the variation in the phenotypic data in a multiple linear regression model. The AFLP markers XPacg/ Mcac3 and XPacg/Mcac6 were anchored by SSR markers previously mapped on the short arms of chromosomes 1A (1AS) and 4D (4DS), respectively. The trp-2 gene is the first leaf rust resistance gene mapped on wheat chromosome 4DS. The mapping of trp-1 and trp-2 provides novel and valuable information that could be used in future studies involving the fine mapping of these genes, as well as in the identification of molecular markers that are closely related to these genes for marker-assisted selection of this important trait in wheat.
Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Monosomía/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Triticum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Análisis de Varianza , Basidiomycota/fisiología , Brasil , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Resistencia a la Enfermedad/inmunología , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Polimorfismo Genético , Triticum/inmunología , Triticum/microbiologíaRESUMEN
To evaluate the mitotic stability of Triticum aestivum x Thinopyrum ponticum derivatives (BC(2)F(7) and BC(2)F(5) doubled haploids), chromosome counting by both conventional and immunostaining techniques, and measurement of DNA content were performed. The wheat progenitor line, PF 839197, the wheat recurrent parent CEP 19 and the control Chinese Spring were also investigated. In the hybrid derivatives, chromosome number ranged from 2n=36 to 60, with a predominance of chromosome numbers higher than 2n=42, that was confirmed by determination of nuclear DNA content. Chinese Spring' and PF 839197 were stable, but CEP 19 showed chromosome number variation (20%). Analyses of non-pretreated cells revealed the presence of anaphase bridges, lagging chromatids, chromosome fragments and micronuclei. Immunostaining with an antibody recognizing histone H3 phosphorylated showed dicentric chromatids forming anaphase bridges and pericentromeric phosphorylation at centric chromosome fragments but not at lagging chromatids. The possible causes of the observed mitotic instability are discussed.