Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Sci Rep ; 14(1): 10400, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710823

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


DNA Breaks, Double-Stranded , DNA Repair , Fibroblasts , Hydrocortisone , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , DNA Breaks, Double-Stranded/radiation effects , Hydrocortisone/pharmacology , Radiation, Ionizing , Cells, Cultured , DNA Damage
2.
Phys Med ; 112: 102636, 2023 Aug.
Article En | MEDLINE | ID: mdl-37494764

PURPOSE: To assess the feasibility of a proton radiography (pRG) system based on a single thin pixelated detector for water-equivalent path length (WEPL) and relative stopping power (RSP) measurements. METHODS: A model of a pRG system consisting of a single pixelated detector measuring energy deposition and proton fluence was investigated in a Geant4-based Monte Carlo study. At the position directly after an object traversed by a broad proton beam, spatial 2D distributions are calculated of the energy deposition in, and the number of protons entering the detector. Their ratio relates to the 2D distribution of the average stopping power of protons in the detector. The system response is calibrated against the residual range in water of the protons to provide the 2D distribution of the WEPL of the object. The WEPL distribution is converted into the distribution of the RSP of the object. Simulations have been done, where the system has been tested on 13 samples of homogeneous materials of which the RSPs have been calculated and compared with RSPs determined from simulations of residual-range-in-water, which we refer to as reference RSPs. RESULTS: For both human-tissue- and non-human-tissue-equivalent materials, the RSPs derived with the detector agree with the reference values within 1%. CONCLUSION: The study shows that a pRG system based on one thin pixelated detection screen has the potential to provide RSP predictions with an accuracy of 1%.

3.
Cells ; 12(2)2023 01 07.
Article En | MEDLINE | ID: mdl-36672184

Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.


Weightlessness , Humans , Weightlessness/adverse effects , Hydrocortisone/pharmacology , Weightlessness Simulation , Radiation, Ionizing , Wound Healing
4.
Med Phys ; 50(3): 1756-1765, 2023 Mar.
Article En | MEDLINE | ID: mdl-36629844

BACKGROUND: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses. PURPOSE: A FP-PR method is proposed for accurate WEPL determination based on a patient-specific imaging field with a reduced number of energies (n) to minimize imaging dose. METHODS: Patient-specific FP-PRs were simulated and measured for a head and neck (HN) phantom. An energy selection algorithm estimated spot-wise the lowest energy required to cross the anatomy (Emin) using a water-equivalent thickness map. Starting from Emin, n was restricted to certain values (n = 26, 24, 22, …, 2 for simulations, n = 10 for measurements), resulting in patient-specific FP-PRs. A reference FP-PR with a complete set of energies was compared against patient-specific FP-PRs covering the whole anatomy via mean absolute WEPL differences (MAD), to evaluate the impact of the developed algorithm. WEPL accuracy of patient-specific FP-PRs was assessed using mean relative WEPL errors (MRE) with respect to measured multi-layer ionization chamber PRs (MLIC-PR) in the base of skull, brain, and neck regions. RESULTS: MADs ranged from 2.1 mm (n = 26) to 21.0 mm (n = 2) for simulated FP-PRs, and 7.2 mm for measured FP-PRs (n = 10). WEPL differences below 1 mm were observed across the whole anatomy, except at the phantom surfaces. Measured patient-specific FP-PRs showed good agreement against MLIC-PRs, with MREs of 1.3 ± 2.0%, -0.1 ± 1.0%, and -0.1 ± 0.4% in the three regions of the phantom. CONCLUSION: A method to obtain accurate WEPL measurements using FP-PR with a reduced number of energies selected for the individual patient anatomy was established in silico and validated experimentally. Patient-specific FP-PRs could provide means of in vivo range verification.


Proton Therapy , Protons , Humans , Water , Radiography , Phantoms, Imaging , Head/diagnostic imaging
5.
Phys Med Biol ; 67(14)2022 07 04.
Article En | MEDLINE | ID: mdl-35697024

Objective. Point detector measurements in proton fields are perturbed by the volume effect originating from geometrical volume-averaging within the extended detector's sensitive volume and density perturbations by non-water equivalent detector components. Detector specific lateral dose response functionsK(x) can be used to characterize the volume effect within the framework of a mathematical convolution model, whereK(x) is the convolution kernel transforming the true dose profileD(x) into the measured signal profile of a detectorM(x). The aim of this work is to investigateK(x) for detectors in proton beams.Approach. TheK(x) for five detectors were determined by iterative deconvolution of measurements ofD(x) andM(x) profiles at 2 cm water equivalent depth of a narrow 150 MeV proton beam. Monte Carlo simulations were carried out for two selected detectors to investigate a potential energy dependence, and to study the contribution of volume-averaging and density perturbation to the volume effect.Main results. The Monte Carlo simulated and experimentally determinedK(x) agree within 2.1% of the maximum value. Further simulations demonstrate that the main contribution to the volume effect is volume-averaging. The results indicate that an energy or depth dependence ofK(x) is almost negligible in proton beams. While the signal reduction from a Semiflex 3D ionization chamber in the center of a gaussian shaped field with 2 mm sigma is 32% for photons, it is 15% for protons. When measuring the field with a microDiamond the trend is less pronounced and reversed with a signal reduction for protons of 3.9% and photons of 1.9%.Significance. The determinedK(x) can be applied to characterize the influence of the volume effect on detectors measured signal profiles at all clinical proton energies and measurement depths. The functions can be used to derive the actual dose distribution from point detector measurements.


Protons , Radiometry , Algorithms , Monte Carlo Method , Photons , Radiometry/methods
6.
Sci Rep ; 12(1): 1822, 2022 02 02.
Article En | MEDLINE | ID: mdl-35110676

For image-guided small animal irradiations, the whole workflow of imaging, organ contouring, irradiation planning, and delivery is typically performed in a single session requiring continuous administration of anaesthetic agents. Automating contouring leads to a faster workflow, which limits exposure to anaesthesia and thereby, reducing its impact on experimental results and on animal wellbeing. Here, we trained the 2D and 3D U-Net architectures of no-new-Net (nnU-Net) for autocontouring of the thorax in mouse micro-CT images. We trained the models only on native CTs and evaluated their performance using an independent testing dataset (i.e., native CTs not included in the training and validation). Unlike previous studies, we also tested the model performance on an external dataset (i.e., contrast-enhanced CTs) to see how well they predict on CTs completely different from what they were trained on. We also assessed the interobserver variability using the generalized conformity index ([Formula: see text]) among three observers, providing a stronger human baseline for evaluating automated contours than previous studies. Lastly, we showed the benefit on the contouring time compared to manual contouring. The results show that 3D models of nnU-Net achieve superior segmentation accuracy and are more robust to unseen data than 2D models. For all target organs, the mean surface distance (MSD) and the Hausdorff distance (95p HD) of the best performing model for this task (nnU-Net 3d_fullres) are within 0.16 mm and 0.60 mm, respectively. These values are below the minimum required contouring accuracy of 1 mm for small animal irradiations, and improve significantly upon state-of-the-art 2D U-Net-based AIMOS method. Moreover, the conformity indices of the 3d_fullres model also compare favourably to the interobserver variability for all target organs, whereas the 2D models perform poorly in this regard. Importantly, the 3d_fullres model offers 98% reduction in contouring time.


Deep Learning , Radiographic Image Interpretation, Computer-Assisted , Radiography, Thoracic , Thorax/diagnostic imaging , X-Ray Microtomography , Animals , Female , Mice, Inbred BALB C , Observer Variation , Predictive Value of Tests , Reproducibility of Results , Workflow
7.
Sci Rep ; 11(1): 14528, 2021 07 15.
Article En | MEDLINE | ID: mdl-34267233

Cellular responses to DNA double-strand breaks (DSBs) not only promote genomic integrity in healthy tissues, but also largely determine the efficacy of many DNA-damaging cancer treatments, including X-ray and particle therapies. A growing body of evidence suggests that activation of the mechanisms that detect, signal and repair DSBs may depend on the complexity of the initiating DNA lesions. Studies focusing on this, as well as on many other radiobiological questions, require reliable methods to induce DSBs of varying complexity, and to visualize the ensuing cellular responses. Accelerated particles of different energies and masses are exceptionally well suited for this task, due to the nature of their physical interactions with the intracellular environment, but visualizing cellular responses to particle-induced damage - especially in their early stages - at particle accelerator facilities, remains challenging. Here we describe a straightforward approach for real-time imaging of early response to particle-induced DNA damage. We rely on a transportable setup with an inverted fluorescence confocal microscope, tilted at a small angle relative to the particle beam, such that cells can be irradiated and imaged without any microscope or beamline modifications. Using this setup, we image and analyze the accumulation of fluorescently-tagged MDC1, RNF168 and 53BP1-key factors involved in DSB signalling-at DNA lesions induced by 254 MeV α-particles. Our results provide a demonstration of technical feasibility and reveal asynchronous initiation of accumulation of these proteins at different individual DSBs.


DNA Damage , Microscopy, Fluorescence/instrumentation , Particle Accelerators , Retinal Pigment Epithelium/radiation effects , Adaptor Proteins, Signal Transducing/analysis , Cell Cycle Proteins/analysis , Cell Line , DNA Breaks, Double-Stranded/radiation effects , Equipment Design , Humans , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Molecular Imaging/instrumentation , Molecular Imaging/methods , Proof of Concept Study , Retinal Pigment Epithelium/cytology , Tumor Suppressor p53-Binding Protein 1/analysis , Ubiquitin-Protein Ligases/analysis
8.
Front Phys ; 8: 00380, 2020 Oct 16.
Article En | MEDLINE | ID: mdl-33224942

Biomedical applications at high-energy particle accelerators have always been an important section of the applied nuclear physics research. Several new facilities are now under constructions or undergoing major upgrades. While the main goal of these facilities is often basic research in nuclear physics, they acknowledge the importance of including biomedical research programs and of interacting with other medical accelerator facilities providing patient treatments. To harmonize the programs, avoid duplications, and foster collaboration and synergism, the International Biophysics Collaboration is providing a platform to several accelerator centers with interest in biomedical research. In this paper, we summarize the programs of various facilities in the running, upgrade, or construction phase.

9.
Phys Med Biol ; 65(24): 245013, 2020 12 11.
Article En | MEDLINE | ID: mdl-32650323

Compared to photon therapy, proton therapy allows a better conformation of the dose to the tumor volume with reduced radiation dose to co-irradiated tissues. In vivo verification techniques including positron emission tomography (PET) have been proposed as quality assurance tools to mitigate proton range uncertainties. Detection of differences between planned and actual dose delivery on a short timescale provides a fast trigger for corrective actions. Conventional PET-based imaging of 15O (T1/2 = 2 min) and 11C (T1/2 = 20 min) distributions precludes such immediate feedback. We here present a demonstration of near real-time range verification by means of PET imaging of 12N (T1/2 = 11 ms). PMMA and graphite targets were irradiated with a 150 MeV proton pencil beam consisting of a series of pulses of 10 ms beam-on and 90 ms beam-off. Two modules of a modified Siemens Biograph mCT PET scanner (21 × 21 cm2 each), installed 25 cm apart, were used to image the beam-induced PET activity during the beam-off periods. The modifications enable the detectors to be switched off during the beam-on periods. 12N images were reconstructed using planar tomography. Using a 1D projection of the 2D reconstructed 12N image, the activity range was obtained from a fit of the activity profile with a sigmoid function. Range shifts due to modified target configurations were assessed for multiples of the clinically relevant 108 protons per pulse (approximately equal to the highest intensity spots in the pencil beam scanning delivery of a dose of 1 Gy over a cubic 1 l volume). The standard deviation of the activity range, determined from 30 datasets obtained from three irradiations on PMMA and graphite targets, was found to be 2.5 and 2.6 mm (1σ) with 108 protons per pulse and 0.9 and 0.8 mm (1σ) with 109 protons per pulse. Analytical extrapolation of the results from this study shows that using a scanner with a solid angle coverage of 57%, with optimized detector switching and spot delivery times much smaller than the 12N half-life, an activity range measurement precision of 2.0 mm (1σ) and 1.3 mm (1σ) within 50 ms into an irradiation with 4 × 107 and 108 protons per pencil beam spot can be potentially realized. Aggregated imaging of neighboring spots or, if possible, increasing the number of protons for a few probe beam spots will enable the realization of higher precision range measurement.


Positron-Emission Tomography/methods , Proton Therapy/methods , Calibration , Feasibility Studies , Half-Life , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy
10.
Phys Med Biol ; 64(23): 235012, 2019 12 05.
Article En | MEDLINE | ID: mdl-31658450

Therapy with helium ions is currently receiving significantly increasing interest because helium ions have a sharper penumbra than protons and undergo less fragmentation than carbon ions and thus require less complicated dose calculations. For any ion of interest in hadron therapy, the accuracy of dose delivery is limited by range uncertainties. This has led to efforts by several groups to develop in vivo verification techniques, including positron emission tomography (PET), for monitoring of the dose delivery. Beam-on PET monitoring during proton therapy through the detection of short-lived positron emitters such as 12N (T 1/2 = 11 ms), an emerging PET technique, provides an attractive option given the achievable range accuracy, minimal susceptibility to biological washout and provision of near prompt feedback. Extension of this approach to helium ions requires information on the production yield of relevant short-lived positron emitters. This study presents the first measurements of the production of short-lived positron emitters in water, graphite, calcium and phosphorus targets irradiated with 59 MeV/u 3He and 50 MeV/u 4He beams. For these targets, the most produced short-lived nuclides are 13O/12N (T 1/2 = 8.6/11 ms) on water, 13O/12N on graphite, 43Ti/41Sc/42Sc (T 1/2 = 509-680 ms) on calcium, 28P (T 1/2 = 268 ms) on phosphorus. A translation of the results from elemental targets to PMMA and representative tissues such as adipose tissue, muscle, compact and cortical bone, shows the dominance of 13O/12N in at least the first 20 s of an irradiation with 4He and somewhat longer with 3He. As the production of 13O/12N in a 3He irradiation is 3-4 times higher than in a 4He irradiation, from a statistical point of view, range verification using 13O/12N PET imaging will be about 2 times more precise for a 3He irradiation compared to a 4He irradiation.


Helium/therapeutic use , Positron-Emission Tomography/methods , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Half-Life , Humans
11.
Radiother Oncol ; 137: 125-129, 2019 08.
Article En | MEDLINE | ID: mdl-31085392

To optimize beam delivery and conformality of proton therapy, MRI integration has been proposed. Therefore, we investigated if proton irradiation in a magnetic field would change biological responses. Our data in cancer cell lines and stem cell-derived organoid models suggest that a magnetic field does not modify the biological response.


Adenocarcinoma of Lung/therapy , Magnetic Field Therapy/methods , Proton Therapy/methods , Salivary Glands/radiation effects , A549 Cells , Adenocarcinoma of Lung/radiotherapy , Animals , Female , HEK293 Cells , Humans , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Salivary Glands/cytology , Stem Cells/cytology , Stem Cells/radiation effects
12.
Clin Cancer Res ; 24(24): 6583-6593, 2018 12 15.
Article En | MEDLINE | ID: mdl-30135147

PURPOSE: Radiotherapy for head and neck cancer may result in serious side effects, such as hyposalivation, impairing the patient's quality of life. Modern radiotherapy techniques attempt to reduce the dose to salivary glands, which, however, results in low-dose irradiation of the tissue stem cells. Here we assess the low-dose sensitivity of tissue stem cells and the consequences for tissue function. EXPERIMENTAL DESIGN: Postirradiation rat salivary gland secretory function was determined after pilocarpine induction. Murine and patient-derived salivary gland and thyroid gland organoids were irradiated and clonogenic survival was assessed. The DNA damage response (DDR) was analyzed in organoids and modulated using different radiation modalities, chemical inhibition, and genetic modification. RESULTS: Relative low-dose irradiation to the high-density stem cell region of rat salivary gland disproportionally impaired function. Hyper-radiosensitivity at doses <1 Gy, followed by relative radioresistance at doses ≥1 Gy, was observed in salivary gland and thyroid gland organoid cultures. DDR modulation resulted in diminished, or even abrogated, relative radioresistance. Furthermore, inhibition of the DDR protein ATM impaired DNA repair after 1 Gy, but not 0.25 Gy. Irradiation of patient-derived salivary gland organoid cells showed similar responses, whereas a single 1 Gy dose to salivary gland-derived stem cells resulted in greater survival than clinically relevant fractionated doses of 4 × 0.25 Gy. CONCLUSIONS: We show that murine and human glandular tissue stem cells exhibit a dose threshold in DDR activation, resulting in low-dose hyper-radiosensitivity, with clinical implications in radiotherapy treatment planning. Furthermore, our results from patient-derived organoids highlight the potential of organoids to study normal tissue responses to radiation.


Adult Stem Cells/metabolism , Adult Stem Cells/radiation effects , DNA Damage/radiation effects , Disease Susceptibility , Radiation Dosage , Radiation, Ionizing , Animals , Dose-Response Relationship, Radiation , Fluorescent Antibody Technique , Humans , Male , Mice , Mice, Knockout , Rats
13.
Int J Radiat Oncol Biol Phys ; 95(1): 103-111, 2016 May 01.
Article En | MEDLINE | ID: mdl-27084633

PURPOSE: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. METHODS AND MATERIALS: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/µm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. RESULTS: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. CONCLUSIONS: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.


Heavy Ion Radiotherapy , Linear Energy Transfer , Photons , Radiation Tolerance , Stem Cells/radiation effects , Submandibular Gland/cytology , Cell Culture Techniques , Cell Line, Transformed , Cell Survival/radiation effects , Cesium Radioisotopes , Collagen , Colony-Forming Units Assay/methods , DNA Breaks, Double-Stranded , Drug Combinations , Histones/analysis , Humans , In Vitro Techniques , Laminin , Proteoglycans , Spheroids, Cellular/cytology , Spheroids, Cellular/radiation effects
14.
Int J Radiat Oncol Biol Phys ; 94(1): 163-171, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26700710

PURPOSE: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. METHODS AND MATERIALS: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. RESULTS: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. CONCLUSIONS: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late RILD are also due to different pathologies. As such, new radiation techniques reducing irradiated volume might change the dose-limiting toxicity of the radiation therapy treatment.


Lung/blood supply , Lung/radiation effects , Radiation Injuries, Experimental/prevention & control , Radiation Pneumonitis/pathology , Respiratory Rate/radiation effects , Animals , Blood Vessels/pathology , Blood Vessels/radiation effects , Disease Models, Animal , Dose-Response Relationship, Radiation , Hypertrophy/etiology , Hypertrophy/pathology , Male , Organs at Risk/blood supply , Organs at Risk/radiation effects , Protons , Radiation Injuries, Experimental/pathology , Radiation Pneumonitis/etiology , Rats , Rats, Wistar , Time Factors
15.
IEEE Trans Med Imaging ; 35(4): 1099-105, 2016 Apr.
Article En | MEDLINE | ID: mdl-26701179

The development of a proton radiography system to improve the imaging of patients in proton beam therapy is described. The system comprises gridpix based time projection chambers, which are based on the Timepix chip designed by the Medipix collaboration, for tracking the protons. This type of detector was chosen to have minimal impact on the actual determination of the proton tracks by the tracking detectors. To determine the residual energy of the protons, a BaF 2 crystal with a photomultiplier tube is used. We present data taken in a feasibility experiment with phantoms that represent tissue equivalent materials found in the human body. The obtained experimental results show a good agreement with the performed simulations.


Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Protons , Radiography/instrumentation , Radiography/methods
16.
Sci Transl Med ; 7(305): 305ra147, 2015 Sep 16.
Article En | MEDLINE | ID: mdl-26378247

Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia.


Head and Neck Neoplasms/radiotherapy , Parotid Gland/radiation effects , Radiotherapy/methods , Salivary Glands/pathology , Salivary Glands/radiation effects , Stem Cells/cytology , Animals , Humans , Mice , Parotid Gland/metabolism , Quality of Life , Radiotherapy/adverse effects , Rats , Saliva/metabolism , Salivary Glands/metabolism , Xerostomia
17.
Phys Med Biol ; 60(9): 3825-46, 2015 May 07.
Article En | MEDLINE | ID: mdl-25905890

Radiotherapy and particle therapy treatment planning require accurate knowledge of the electron density and elemental composition of the tissues in the beam path to predict the local dose deposition. We describe a method for the analysis of dual energy computed tomography (DECT) images that provides the electron densities and effective atomic numbers of tissues. The CT measurement process is modelled by system weighting functions, which apply an energy dependent weighting to the parameterization of the total cross section for photon interactions with matter. This detailed parameterization is based on the theoretical analysis of Jackson and Hawkes and deviates, at most, 0.3% from the tabulated NIST values for the elements H to Zn. To account for beam hardening in the object as present in the CT image we implemented an iterative process employing a local weighting function, derived from the method proposed by Heismann and Balda. With this method effective atomic numbers between 1 and 30 can be determined. The method has been experimentally validated on a commercially available tissue characterization phantom with 16 inserts made of tissue substitutes and aluminium that has been scanned on a dual source CT system with tube potentials of 100 kV and 140 kV using a clinical scan protocol. Relative electron densities of all tissue substitutes have been determined with accuracy better than 1%. The presented DECT analysis method thus provides high accuracy electron densities and effective atomic numbers for radiotherapy and especially particle therapy treatment planning.


Algorithms , Electrons , Photons , Protons , Tomography, X-Ray Computed/methods , Phantoms, Imaging
18.
Radiother Oncol ; 114(1): 96-103, 2015 Jan.
Article En | MEDLINE | ID: mdl-25465731

BACKGROUND AND PURPOSE: In thoracic irradiation, the maximum radiation dose is restricted by the risk of radiation-induced cardiopulmonary damage and dysfunction limiting tumor control. We showed that radiation-induced sub-clinical cardiac damage and lung damage in rats mutually interact and that combined irradiation intensifies cardiopulmonary toxicity. Unfortunately, current clinical practice does not include preventative measures to attenuate radiation-induced lung or cardiac toxicity. Here, we investigate the effects of the ACE inhibitor captopril on radiation-induced cardiopulmonary damage. MATERIAL AND METHODS: After local irradiation of rat heart and/or lungs captopril was administered orally. Cardiopulmonary performance was assessed using biweekly breathing rate measurements. At 8 weeks post-irradiation, cardiac hemodynamics were measured, CT scans and histopathology were analyzed. RESULTS: Captopril significantly improved breathing rate and cardiopulmonary density/structure, but only when the heart was included in the radiation field. Consistently, captopril reduced radiation-induced pleural and pericardial effusion and cardiac fibrosis, resulting in an improved left ventricular end-diastolic pressure only in the heart-irradiated groups. CONCLUSION: Captopril improves cardiopulmonary morphology and function by reducing acute cardiac damage, a risk factor in the development of radiation-induced cardiopulmonary toxicity. ACE inhibition should be evaluated as a strategy to reduce cardiopulmonary complications induced by radiotherapy to the thoracic area.


Angiotensin-Converting Enzyme Inhibitors/pharmacology , Captopril/pharmacology , Heart/radiation effects , Lung/radiation effects , Radiation Injuries/prevention & control , Animals , Male , Rats, Wistar , Respiratory Rate/radiation effects , Thoracic Neoplasms/radiotherapy , Vascular Remodeling/radiation effects
19.
Int J Radiat Oncol Biol Phys ; 84(5): e639-46, 2012 Dec 01.
Article En | MEDLINE | ID: mdl-22975617

INTRODUCTION: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. METHODS AND MATERIALS: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F(18)-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. RESULTS: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of (18)F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. CONCLUSIONS: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.


Heart/radiation effects , Lung/radiation effects , Organs at Risk/radiation effects , Radiation Injuries/physiopathology , Animals , Blood Pressure/physiology , Blood Pressure/radiation effects , Fluorodeoxyglucose F18/pharmacokinetics , Heart/diagnostic imaging , Heart/physiology , Lung/diagnostic imaging , Lung/pathology , Lung/physiology , Male , Myocardium/pathology , Organs at Risk/diagnostic imaging , Organs at Risk/pathology , Organs at Risk/physiology , Positron-Emission Tomography/methods , Pulmonary Artery/physiopathology , Pulmonary Edema/etiology , Radiation Injuries/diagnostic imaging , Radiation Injuries/pathology , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Respiratory Rate/physiology , Respiratory Rate/radiation effects , Ventricular Function, Left/physiology , Ventricular Function, Left/radiation effects
20.
Int J Radiat Oncol Biol Phys ; 83(4): 1291-7, 2012 Jul 15.
Article En | MEDLINE | ID: mdl-22245200

PURPOSE: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. METHODS AND MATERIALS: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. RESULTS: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. CONCLUSIONS: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.


Apoptosis/genetics , Gene Expression/radiation effects , Genes, p53/radiation effects , Linear Energy Transfer , Organs at Risk/radiation effects , Plasminogen Activator Inhibitor 1/genetics , Radiation Injuries/genetics , Apoptosis/radiation effects , Carbon , Cell Line, Transformed , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Gene Expression/physiology , Genes, p53/physiology , HEK293 Cells , Humans , Phosphorylation/radiation effects , Photons , Plasmids/genetics , Radiotherapy, High-Energy , Transcriptional Activation/radiation effects
...