Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460683

RESUMEN

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

2.
Environ Sci Technol ; 58(5): 2224-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267018

RESUMEN

Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Salinidad , Piretrinas/toxicidad , Insecticidas/toxicidad , Peces/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad
3.
Front Microbiol ; 14: 1259014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869676

RESUMEN

Plastic waste accumulation in marine environments has complex, unintended impacts on ecology that cross levels of community organization. To measure succession in polyolefin-colonizing marine bacterial communities, an in situ time-series experiment was conducted in the oligotrophic coastal waters of the Bermuda Platform. Our goals were to identify polyolefin colonizing taxa and isolate bacterial cultures for future studies of the biochemistry of microbe-plastic interactions. HDPE, LDPE, PP, and glass coupons were incubated in surface seawater for 11 weeks and sampled at two-week intervals. 16S rDNA sequencing and ATR-FTIR/HIM were used to assess biofilm community structure and chemical changes in polymer surfaces. The dominant colonizing taxa were previously reported cosmopolitan colonizers of surfaces in marine environments, which were highly similar among the different plastic types. However, significant differences in rare community composition were observed between plastic types, potentially indicating specific interactions based on surface chemistry. Unexpectedly, a major transition in community composition occurred in all material treatments between days 42 and 56 (p < 0.01). Before the transition, Alteromonadaceae, Marinomonadaceae, Saccharospirillaceae, Vibrionaceae, Thalassospiraceae, and Flavobacteriaceae were the dominant colonizers. Following the transition, the relative abundance of these taxa declined, while Hyphomonadaceae, Rhodobacteraceae and Saprospiraceae increased. Over the course of the incubation, 8,641 colonizing taxa were observed, of which 25 were significantly enriched on specific polyolefins. Seven enriched taxa from families known to include hydrocarbon degraders (Hyphomonadaceae, Parvularculaceae and Rhodobacteraceae) and one n-alkane degrader (Ketobacter sp.). The ASVs that exhibited associations with specific polyolefins are targets of ongoing investigations aimed at retrieving plastic-degrading microbes in culture.

4.
Front Toxicol ; 5: 1154538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168661

RESUMEN

Reports of plastics, at higher levels than previously thought, in the water that we drink and the air that we breathe, are generating considerable interest and concern. Plastics have been recorded in almost every environment in the world with estimates on the order of trillions of microplastic pieces. Yet, this may very well be an underestimate of plastic pollution as a whole. Once microplastics (<5 mm) break down in the environment, they nominally enter the nanoscale (<1,000 nm), where they cannot be seen by the naked eye or even with the use of a typical laboratory microscope. Thus far, research has focused on plastics in the macro- (>25 mm) and micro-size ranges, which are easier to detect and identify, leaving large knowledge gaps in our understanding of nanoplastic debris. Our ability to ask and answer questions relating to the transport, fate, and potential toxicity of these particles is disadvantaged by the detection and identification limits of current technology. Furthermore, laboratory exposures have been substantially constrained to the study of commercially available nanoplastics; i.e., polystyrene spheres, which do not adequately reflect the composition of environmental plastic debris. While a great deal of plastic-focused research has been published in recent years, the pattern of the work does not answer a number of key factors vital to calculating risk that takes into account the smallest plastic particles; namely, sources, fate and transport, exposure measures, toxicity and effects. These data are critical to inform regulatory decision making and to implement adaptive management strategies that mitigate risk to human health and the environment. This paper reviews the current state-of-the-science on nanoplastic research, highlighting areas where data are needed to establish robust risk assessments that take into account plastics pollution. Where nanoplastic-specific data are not available, suggested substitutions are indicated.

5.
PeerJ ; 11: e14564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815986

RESUMEN

Measuring the spatial distribution of microparticles which include synthetic, semi-synthetic, and anthropogenic particles is critical to understanding their potential negative impacts on species. This is particularly important in the context of microplastics, which are a form of microparticle that are prevalent in the marine environment. To facilitate a better understanding of microparticle occurrence, including microplastics, we sampled subadult and young juvenile Black Rockfish (Sebastes melanops) at multiple Oregon coast sites, and their gastrointestinal tracts were analyzed to identify ingested microparticles. Of the subadult rockfish, one or more microparticles were found in the GI tract of 93.1% of the fish and were present in fish from Newport, and near four of five marine reserves. In the juveniles, 92% of the fish had ingested one or more microparticles from the area of Cape Foulweather, a comparison area, and Otter Rock, a marine reserve. The subadults had an average of 7.31 (average background = 5) microparticles detected, while the juveniles had 4.21 (average background = 1.8). In both the subadult and juvenile fish, approximately 12% of the microparticles were identified as synthetic using micro-Fourier Infrared Spectroscopy (micro-FTIR). Fibers were the most prevalent morphology identified, and verified microparticle contamination was a complex mixture of synthetic (∼12% for subadults and juveniles), anthropogenic (∼87% for subadults and 85.5% for juveniles), and natural (e.g., fur) materials (∼0.7% for subadults and ∼2.4% for juveniles). Similarities in exposure types (particle morphology, particle number) across life stages, coupled with statistical differences in exposure levels at several locations for subadult fish, suggest the potential influence of nearshore oceanographic patterns on microparticle distribution. A deeper understanding of the impact microplastics have on an important fishery such as those for S. melanops, will contribute to our ability to accurately assess risk to both wildlife and humans.


Asunto(s)
Lubina , Perciformes , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Plásticos , Oregon , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
6.
Sci Total Environ ; 857(Pt 3): 159398, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257430

RESUMEN

Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Larva , Permetrina , Salinidad , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Piretrinas/toxicidad , Piretrinas/química , Peces/fisiología , Insecticidas/toxicidad , Insecticidas/química
7.
Environ Epigenet ; 8(1): dvac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518876

RESUMEN

Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.

10.
Environ Toxicol Chem ; 41(4): 917-930, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34379816

RESUMEN

Anthropogenic debris including microparticles (<5 mm) are ubiquitous in marine environments. The Salish Sea experiences seasonal fluctuations in precipitation, river discharge, sewage overflow events, and tourism-all variables previously thought to have an impact on microparticle transport and concentrations. Our goals are two-fold: 1) describe long-term microparticle contamination data including concentration, type, and size; and 2) determine if seasonal microparticle concentrations are dependent on environmental or tourism variables in Elliott Bay, Salish Sea. We sampled 100 L of seawater at a depth of approximately 9 m at the Seattle Aquarium, Seattle, Washington State, United States, approximately every two weeks from 2019 through 2020 and used an oil extraction protocol to separate microparticles. We found that microparticle concentrations ranged from 0 to 0.64 particles L-1 and fibers were the most common type observed. Microparticle concentrations exhibited a breakpoint on 10 April 2020, where estimated slope and associated microparticle concentration significantly declined. Further, when considering both environmental as well as tourism variables, temporal microparticle concentration was best described by a mixed-effects model, with tourism as the fixed effect and the person counting microparticles as the random effect. Although monitoring efforts presented set out to identify effects of seasonality and interannual differences in microparticle concentrations, it instead captured an effect of decreased tourism due to the global Covid-19 pandemic. Long-term monitoring is critical to establish temporal microparticle concentrations and to help researchers understand if there are certain events, both seasonal and sporadic (e.g., rain events, tourism, or global pandemics), when the marine environment is more at risk from anthropogenic pollution. Environ Toxicol Chem 2022;41:917-930. © 2021 Seattle Aquarium. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Humanos , Pandemias , Washingtón , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Endanger Species Res ; 44: 89-103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354772

RESUMEN

Pyrethroid and organophosphate pesticides are two of the most commonly used classes of insecticide worldwide. At sublethal concentrations, permethrin (a pyrethroid) and chlorpyrifos (an organophosphate) impact behavior in model fish species. We investigated behavioral effects of environmentally relevant concentrations of permethrin or chlorpyrifos on early larval delta smelt Hypomesus transpacificus, a Critically Endangered teleost species endemic to the San Francisco Bay Delta, California, USA. Using a photomotor behavioral assay of oscillating light and dark periods, we measured distance moved, turn angle, meander, angular velocity, rotations, thigmotaxis (time spent in the border versus center), and swim speed duration and frequency. The lowest concentrations of permethrin used in the tests (0.05 and 0.5 µg l-1) caused significant increases in distance moved at 72 and 96 h, respectively. At 48, 72, and 96 h of exposure, 5 µg l-1 of permethrin caused a hyperactive state in which the larvae significantly decreased thigmotaxis, quickly turning in short bouts of activity, characterized by significant increases in rotations and freezing events. Larvae exposed to 0.05 µg l-1 chlorpyrifos significantly increased thigmotaxis at 72 and 96 h. In response to 5 µg l-1 chlorpyrifos, larvae significantly increased velocity at 72 h exposure, and significantly increased freezing events at 96 h. Behavioral data on larval delta smelt exposed to contaminants present in their limited habitat have the potential to aid evaluations of the suitability of spawning and rearing habitats for this endangered species, thus improving conservation management strategies focused on this sensitive life stage.

12.
Environ Pollut ; 285: 117653, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380229

RESUMEN

Microplastics are ubiquitous in marine and estuarine ecosystems, and thus there is increasing concern regarding exposure and potential effects in commercial species. To address this knowledge gap, we investigated the effects of microplastics on larval and early juvenile life stages of the Black Sea Bass (Centropristis striata), a North American fishery. Larvae (13-14 days post hatch, dph) were exposed to 1.0 × 104, 1.0 × 105, and 1.0 × 106 particles L-1 of low-density polyethylene (LDPE) microspheres (10-20 µm) directly in seawater and via trophic transfer from microzooplankton prey (tintinnid ciliates, Favella spp.). We also compared the ingestion of virgin and chemically-treated microspheres incubated with either phenanthrene, a polycyclic aromatic hydrocarbon, or 2,4-di-tert-butylphenol (2,4-DTBP), a plastic additive. Larval fish did not discriminate between virgin or chemically-treated microspheres. However, larvae did ingest higher numbers of microspheres through ingestion of microzooplankton prey than directly from the seawater. Early juveniles (50-60 dph) were directly exposed to the virgin and chemically-treated LDPE microspheres, as well as virgin LDPE microfibers for 96 h to determine physiological effects (i.e., oxygen consumption and immune response). There was a significant positive relationship between oxygen consumption and increasing microfiber concentration, as well as a significant negative relationship between immune response and increasing virgin microsphere concentration. This first assessment of microplastic pollution effects in the early life stages of a commercial finfish species demonstrates that trophic transfer from microzooplankton can be a significant route of microplastic exposure to larval stages of C. striata, and that multi-day exposure to some microplastics in early juveniles can result in physiological stress.


Asunto(s)
Lubina , Contaminantes Químicos del Agua , Animales , Ingestión de Alimentos , Ecosistema , Explotaciones Pesqueras , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Toxics ; 9(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065370

RESUMEN

Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol-water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.

14.
Toxics ; 9(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672739

RESUMEN

Salinity can interact with organic compounds and modulate their toxicity. Studies have shown that the fraction of pyrethroid insecticides in the aqueous phase increases with increasing salinity, potentially increasing the risk of exposure for aquatic organisms at higher salinities. In the San Francisco Bay Delta (SFBD) estuary, pyrethroid concentrations increase during the rainy season, coinciding with the spawning season of Delta Smelt (Hypomesus transpacificus), an endangered, endemic fish. Furthermore, salinity intrusion in the SFBD is exacerbated by global climate change, which may change the dynamics of pyrethroid toxicity on aquatic animals. Therefore, examining the effect of salinity on the sublethal toxicity of pyrethroids is essential for risk assessments, especially during the early life stages of estuarine fishes. To address this, we investigated behavioral effects of permethrin and bifenthrin at three environmentally relevant concentrations across a salinity gradient (0.5, 2 and 6 PSU) on Delta Smelt yolk-sac larvae. Our results suggest that environmentally relevant concentrations of pyrethroids can perturb Delta Smelt larvae behavior even at the lowest concentrations (<1 ng/L) and that salinity can change the dynamic of pyrethroid toxicity in terms of behavioral effects, especially for bifenthrin, where salinity was positively correlated with anti-thigmotaxis at each concentration.

15.
Environ Toxicol Chem ; 40(7): 1822-1828, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33661533

RESUMEN

Agglomeration of nanoplastics in waters can alter their transport and fate in the environment. Agglomeration behavior of 4 nanoplastics differing in core composition (red- or blue-dyed polystyrene) and surface chemistry (plain or carboxylated poly[methyl methacrylate] [PMMA]) was investigated across a salinity gradient. No agglomeration was observed for carboxylated PMMA at any salinity, whereas the plain PMMA agglomerated at only 1 g/L. Both the red and the blue polystyrene agglomerated at 25 g/L. Results indicate that both composition and surface chemistry can impact how environmental salinity affects plastic nanoparticle agglomeration. Environ Toxicol Chem 2021;40:1822-1828. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecotoxicología , Poliestirenos/química , Salinidad , Contaminantes Químicos del Agua/análisis
16.
Environ Pollut ; 275: 116545, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33578317

RESUMEN

Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed 14C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g-1 lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.


Asunto(s)
Anfípodos , Insecticidas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Ecosistema , Peces , Insecticidas/análisis , Insecticidas/toxicidad , Permetrina/toxicidad , Transcriptoma , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Aquat Toxicol ; 228: 105611, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32949974

RESUMEN

Bifenthrin is a pyrethroid insecticide commonly used in agricultural and urban sectors, and is found in watersheds worldwide. As a sodium channel blocker, at sublethal concentrations it causes off-target effects, including disruption of calcium signaling and neuronal growth. At the whole organism level, sublethal concentrations of bifenthrin cause behavioral effects in fish species, raising concerns about the neurotoxic properties of the compound on fish populations. Here we describe the application of a high-throughput behavioral system to evaluate contaminant impacts on the sensitive early-life stages of Delta smelt (Hypomesus transpacificus), a critically endangered teleost species endemic to the San Francisco Bay Delta (SFBD), California, USA. Leveraging the natural behavior of early-larval Delta smelt, whereby they increase movement in bright light and decrease movement in the dark, we developed a test using a cycle of light and dark periods in a closed chamber to test hyper- or hypoactivity for this species. We show that early-larval Delta smelt have a significant preference to move toward light, and utilized the behavioral test to evaluate the impact of exposure to bifenthrin at concentrations found in habitats where Delta smelt reportedly spawn, ranging up to concentrations detected in tributaries to these habitats. All tested concentrations of bifenthrin (nominal 2, 10, or 100 ng/L) caused hyperactivity, over a 96 h exposure, with noted significance determined during the light period of the test. To further understand the impact of bifenthrin exposure, expression of a suite of genes relevant to neurodevelopment, the mechanistic target of rapamycin (mTOR) signaling pathway, and biotransformation in exposed larvae were also measured. Following exposure to picomolar concentrations of bifenthrin, expression of genes in the mTOR signaling and neurogenesis pathways were altered alongside behavior. This study demonstrates how light and dark cycle behavioral tests can be used to assess sensitive alterations in swimming activity in Delta smelt at early developmental stages and how gene expression can complement these assays. This approach can be used to assess the impact of multiple compounds that occur within the restricted habitat of Delta smelt, thus having the potential to greatly inform conservation management strategies for this critically sensitive life stage.


Asunto(s)
Especies en Peligro de Extinción , Larva/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Osmeriformes/crecimiento & desarrollo , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Ecosistema , Osmeriformes/fisiología , Estaciones del Año , Natación
18.
Environ Sci Technol ; 54(21): 13849-13860, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989987

RESUMEN

Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Disruptores Endocrinos/toxicidad , Etinilestradiol/toxicidad , Peces , Reproducción , Contaminantes Químicos del Agua/toxicidad
19.
Appl Spectrosc ; 74(9): 1099-1125, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32643389

RESUMEN

Plastic pollution is a defining environmental contaminant and is considered to be one of the greatest environmental threats of the Anthropocene, with its presence documented across aquatic and terrestrial ecosystems. The majority of this plastic debris falls into the micro (1 µm-5 mm) or nano (1-1000 nm) size range and comes from primary and secondary sources. Its small size makes it cumbersome to isolate and analyze reproducibly, and its ubiquitous distribution creates numerous challenges when controlling for background contamination across matrices (e.g., sediment, tissue, water, air). Although research on microplastics represents a relatively nascent subfield, burgeoning interest in questions surrounding the fate and effects of these debris items creates a pressing need for harmonized sampling protocols and quality control approaches. For results across laboratories to be reproducible and comparable, it is imperative that guidelines based on vetted protocols be readily available to research groups, many of which are either new to plastics research or, as with any new subfield, have arrived at current approaches through a process of trial-and-error rather than in consultation with the greater scientific community. The goals of this manuscript are to (i) outline the steps necessary to conduct general as well as matrix-specific quality assurance and quality control based on sample type and associated constraints, (ii) briefly review current findings across matrices, and (iii) provide guidance for the design of sampling regimes. Specific attention is paid to the source of microplastic pollution as well as the pathway by which contamination occurs, with details provided regarding each step in the process from generating appropriate questions to sampling design and collection.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Microplásticos , Control de Calidad , Manejo de Especímenes/métodos , Contaminantes Ambientales/análisis , Contaminantes Ambientales/aislamiento & purificación , Guías como Asunto , Microplásticos/análisis , Microplásticos/aislamiento & purificación
20.
Mar Pollut Bull ; 156: 111202, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32510422

RESUMEN

This study investigated the sensitivity of two deepsea species using mortality of northern shrimp (Pandalus borealis) and polyp activity of stony coral (Lophelia pertusa) to dispersant, Corexit 9500 and aromatic hydrocarbons (toluene, 2-methylnaphthalene, phenanthrene) in 96-h tests. Resulting hydrocarbon toxicity data were fit to the Target Lipid Model to generate predictive models and determine species sensitivity. Toxicity of chemically enhanced water accommodated fractions of Alaskan North Slope crude oil (ANS-oil) was also investigated with shrimp using nominal loading, total petroleum hydrocarbons and biomimetic extraction (BE) as oil exposure metrics. Coral were more sensitive to dispersant than shrimp while similar sensitivity was observed for hydrocarbons. Study and literature findings indicate deepsea species exhibit acute sensitivities to dispersant, hydrocarbons and oil that are comparable to pelagic species. Results support use of passive sampling methods to quantify dissolved oil for interpreting oil toxicity tests and suggest models for predicting time-dependence of toxicity warrant re-evaluation.


Asunto(s)
Antozoos , Pandalidae , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...